
RD-A174 635 TOWARD HIGHLY PORTABLE DATABASE SYSTEMS- ISSUES AND t/I
SOLUTIONS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CAA NONG JUN Sb

UNCLASSIFIED F/G 9/2

EEEEEEEEEEoiI

llllllllllmmllIEIEEEEEEEEEEIEohhEEEEEEohEE
EEmhEEEohEohEE

U1.

1111I 2 Ijjf=L.n

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS 1963 A

* 9

* -. ~ - - '3

* ~ 3 .~g * ~snow ~

Lfl

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
LECTE

DEC 3 1986

THESIS
TOWARD HIGHLY PORTABLE DATABASE SYSTEMS:

ISSUES AND SOLUTIONS

by

Albert Wong

June 1986

CO-

Thesis Advisor: David K. Hsiao

Approved for public release; distribution unlimited

86 12 02 175

4tM 2*ti -

SECURITY CLASSIFICATION OF THIS PAGE
REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 71. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School
6C ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

ITI TITLE (Include Security CLassification)

TOWARD HIGHLY PORTABLE DATABASE SYSTEMS: ISSUES AND SOLUTIONS

PERSONAL AUTHOR(S) Albert Wong

13a TYPE OF REPORT ?3b TIME COVERED 14 DATE OF REPORT (Year, Month. Oay) 115 PAGE COUNT

Masters Thesis FROM TO June 1986 J 93
"6 SUPPLEMENTARY NOTATION

' " COSATI CODE'S 18.l' SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

1 10 GROUP SUB-GROUP Software Portability, Software Engineering, Date-
base Systems, Data 4odels, Query Languages, Record
Templates, Network Communications, Disk Input/Out-

'9 (BSTRACT (Continue on reverse of necessary and ident, fy by block number) The multi-backend database system
(MBDS) is a database system of two or more processors and their dedicated
disk subsystems. One of the processors serves as a controller. The rest of
the processors and their disks serves as backends to provide the primary and
parallel database operations. User access to the MBDS is accomplished
either via a host computer which in turn communicates with the controller,
or with the MBDS controller directly. The thesis is aimed to examine the
portability of MBDS. By downloading the MBDS software from the configura-
tion of VAX and PDP hardware and VMS and RSX operating systems to the
configuration of the 32-bit microprocessor-based ISI hardware and UNIX
operating system, we hope to determine the necessary amount of hardware-
and-operating-system-dependent modifications and reinstrumentations in order
to make the downloading successful. The ultimate goal of the thesis is to
recommend to the future database-system designer the way to minimize the

20 D-S7Ri3UTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[-2NCLASSIFIED/UNLIMITED 03 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include AreaCode) 22c OFFICE SYMBOL

David K. Hsiao (408) 646-2253 52Hq

00 FORM 1473,84 MAR 83 APR edition may be used untl exhausted SECURITY CLASSIFICATION OF TIS PACE
All other editions are obsolete

AM1I

Unclassified
SaCURITY CLASSIFICATIOM OF THIS PAGa[(f1tm Do*. &Wewe.

amount of configuration-dependent software and to strive for a truly ano
highly portable system to be used on various configurations. This thesis has
identified three major portability issues and provided solutions to them. They
are the multiple-record template support, the interprocess communications via
broadcasting, and the disk I/O for the real-time access.

• .PJc i

Di~t

As c no' I r

L
2

SECURITY CLASSIPICATIOW Of THIS PAGE(Wk.., Des Etecerd)

Approved for public release. di tribution i; unlimited.

Towards Highly Portable Database Systems:
Issues and Solutions

by

Albert Wong
B. S., West Coast University, 1966

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1986

Author: _ _ _ _ _ _ _

Albert Wong /

Approved by: r #)
David K. Hsiao, Thesis Advisor

Steven A. Demurjia Second R ader

Department o Computer Science

J. N. Dyer,
Dean of Science and Engineering

ABSTRACT

The multi-backend database system (MBDS) is a database system of two or

more processors and their dedicated disk subsystems. One of the processor serves

as a controller. The rest of the processors and their disks serves as backends to

provide the primary and parallel database operations. User access to the MBDS is

accomplished either via a host computer which in turn communicates with the

controller, or with the MBDS controller directly.

The thesis is aimed to examine the portability of MBDS. By downloading the

MBDS software from the configuration of VAX and PDP hardware and VMS and

RSX operating systems to the configuration of the 32-bit microprocessor-based ISI

hardware and UNIX operating system, we hope to determine the necessary

amount of hardware-and-operating-system-dependent modifications and

reinstrumentations in order to make the downloading successful The ultimate

goal of the thesis is to recommend to the future database-system designer the way

to minimize the amount of configuration-dependent software and to strive for a

truly and highly portable system to be used on various configurations. This thesis

has identified three major portability issues and provided solutions to them. They

are the multiple-record template support. the interprocess communication via

broadcasting, and the disk I/O for the real-time access.

4

TABLE OF CONTENTS

A N IN T R O D U CT IO N .. 7

A. THE INTENT OF THE THESIS 8

B. SOFTWARE PORTABILITY ISSUES ... 9

C. THE ORGANIZATION OF THE THESIS 10

II. MULTIPLE-RECORD TEMPLATES .. 12

A. THE DAT.. MODEL AND DATA LANGUAGE 13

1. The Attribute-Based Data Model .. 13

2. The Attribute-Based Language (ABDL) 15

B. SPECIFICATIONS OF NEW TEMPLATES 17

1. T em plate D escriptions ... 18

2. Descriptor Specifications ... 21

3. D atabase R ecords ... 23

C. LOADING THE DATABASE ... 25

1. R ecord H andling .. 25

2. The Record Clustering and Placement .. 29

III. THE MESSAGE PASSING FACILITIES .. 31

A. THE ISI-WORKSTATION CONFIGURATION 32

1. The Hardware Organization .. 31

2. The Software Environm ent ... 35

B. THE MBDS PROCESS STRUCTURE .. 35

1. C ontroller P rocesses .. 35

2. The User-Interface Process ... 37

3. B ackend P rocesses ... 37

5

~' r

4. Com m unication Processes ... 38

C. THE COMMUNICATION PROTOCOLS .. 39

1. Interprocess Communications .. 40

2. Interprocessor Communications .. 43

IV. THE DISK INPUT/OUTPUT PROCESS .. 45

A. DESIGN CONSIDERATIONS .. 46

1. D esign O bjectives ... 47

2. Design Alternatives 48

3. Portability Considerations ... 49

B. THE DESIGN OF THE DISK I/O PROCESS 50

1. The M essage Passing Interface .. 53

2. The Q ueuing Strategy .. 54

3. The I/O Processing ... 54

C. THE IMPLEMENTATION ... 56

1. The Program Structure .. 56

2. Modifications in Record Processing .. 58

V . C O N CLU SIO N S ... 60

A. A REVIEW OF THE MBDS SYSTEM .. 60

B. THE SUMMARY OF THE WORK .. 61

C. PORTABILITY ISSUES AND SOLUTIONS 62

APPENDIX A - THE USER INTERFACE .. 64

APPENDIX B - DISK I/O SPECIFICATIONS .. 82

LIST O F R EFER EN CES .. 91

INITIAL DISTRIBUTION LIST .. 92

6

I. AN INTRODUCTION

The Multi-Backend Database System (MBDS) [Ref. 1 and 2] is an on-going

effort directed by Prof. David K. Hsiao of the Naval Postgraduate School for con-

ducting research in large-scale database processing. The system consists of a con-

troller and a varying number of parallel backends. The controller provides the

required user interface and orchestrates the activities of the backends. Backends.

on the other hand, are equipped with large memories and high-capacity disks to

handle the bulk of the parallel database operations.

MDBS is designed to be a highly extensible system. Performance improve-

ment can be achieved by adding new backends. By the same token., database

growth can be accommodated without sacrificing performance. Because backends

have identical hardware and are running identical software, additions of new

backends require no software modification other than redistributing the database.

A prototype of such a system has been developed. This prototype uses a

VAX-11/780 computer as the controller and two PDP-11/44 computers as back-

ends. The controller and the backends are interconnected via a number of time-

division multiplexed links called the Parallel Communication Links (PCLs). User

requests are entered from a host computer into the controller which simultane-

ously broadcasts the requests to the backends over the PCLs. Each backend, in

turn, processes the same requests with concurrency control. directory management

and record processing techniques [Ref 3 thru 61.

7

A. THE INTENT OF THE THESI.s

Our goal of the thesis is first to examine the portability of the NMBDS

software. We plan to download the MBDS software from the configuration of the

VAX and PDP hardware and VMS and RSX operating systems to the

configuration of the microprocessor-based ISI-workstations and UNIX operating

systems. We need to identify and isolate the configuration-dependent portions of

the MBDS software and to carry out the necessary modifications and re-

instrumentations in order to make the downloading successful. Our ultimate goal

is to recommend to the future database-system designers the way to minimize the

amount of configuration-dependent software and to strive for the design of a

highly-portable database system for a variety of configurations.

As we begin our task of porting the MBDS software, Prof. Douglas S. Kerr of

the Ohio State University has made available a version of the MBDS system

software that has been downloaded to the configuration of a VAX-11/780 and

three SUN-workstations running under Berkeley 4.2 BSD UNIX operating sys-

tems. Prof Kerr. through a previous affiliation with Prof. Hsiao, is one the

member of the MBDS research project. He is still collaborating the database sys-

tems research with members of the MBDS project at the Naval Postgraduate

School. Thus, we begin our portability study with the Ohio State version.

Because of the similarity between the SUN- and the ISI-workstation, our down-

loading effort is substantially reduced. The work involves (1) the downloading of

the MBDS software to run on the ISI-workstation configuration under the UNIX

operating system and (2) the design, development, and implementation of the new

interface between the controller and the backends. There are three major areas of

concern:

8

1) Multiple-record templates for the support of multiple file
types in MBDS.

2) Intraprocess and interprocess communications based on the
broadcast bus (i.e.. the Ethernet).

3) Disk I/O operations for real-time access.

B. SOFTWARE PORTABILITY ISSUES

Software portability allows the software to be run on a second computer with

lesser effort than it would be required to develop the software from the scratch for

the second computer. The technique required for producing portable software

varies with applications and their intended usages. For commercial software pro-

ducts. the questions of legal protection also become an important issue.

In general. software portability issues are divided in three categories:

hardware dependencies, programming languages, and operating systems. The

classic approach in dealing with hardware dependencies is first to identify portions

of the software that may have to be changed for the different hardware so that

the differences are modularized with well-defined interfaces, and then to design

and develop these portion of the software for the new hardware. We believe that

the software written in high-level languages does not alone guarantee the portabil-

ity. Possible problems with the portability of the software written in high-level

languages are differences in language implementations and dialects, as well as

hardware dependencies that are inherent in the compilers. For coping with

operating system idosyncrasies, the technique of the abstract construct is often

used. Abstract constructs do not commit themselves to a particular operating

system and computer hardware. They are therefore portable. If the next operat-

ing system differs from the original one, only the software module implementing

the abstract constructs requires to be changed.

0

An ideal portable software syvseni would be one that could be run on any

computer with any operating system with no change at all. This is unlikely to

happen. Nevertheless. it is important to note when designing portable software,

the real issues are (1) to be aware of hardware dependencies rather than to avoid

proper utilizations of hardware elements and high-level programming and (2) to

utilize abstract constructs for operating system interfaces.

C. THE ORGANIZATION OF THE THESIS

The remainder of this thesis is organized in four chapters. Chapter II

describes the implementation of multiple-record templates. Included in this

chapter is a discussion on the data model and the data language. This discussion

is necessary for the understanding of the concept of templates. The format of the

record template is then discussed along with the loading of the database. Details

of the database load is given in appendix A. It is hoped that this section together

with the addendix is sufficiently well documented to serve as a MBDS user guide.

Chapter III discusses the Ohio State version of the message-passing interface.

For the discussion of the message interface, the entire MBDS process structure is

reviewed and shown how the messages are being handled. The handling of the

message is a complex operation and may be difficult to understand. Therefore. it

is necessary to introduce an overview of the Berkeley 4.2 BSD interprocess com-

munication facilities, with an emphasis on the specific communication and broad-

casting capabilities. In particular. we are interested in the messages issued by a

program for the broadcasting network connections from within a program. How-

ever, the discussion of network application utilities is not included.

Chapter IV deals with the Disk I/O process. It is a new backend process to

handle the disk I/O requests from other backend processes. This chapter

10

discusses- the definition of the software requirement, and the analysis of the

design. Three design alternatives are presented and evaluated. Selection criteria

are based on performance and portability considerations. Included in this

chapter, are the design and the implementation. Detailed design specifications

are given in appendix B. Finally, in chapter V, we summarize our portability

efforts and recommend ways to improve the performance and portability of

MBDS.

L11

II. MULTIPLE-RECORD TEMPLATES

A record template (or template) is a specification of a record structure that

the database administrator uses to characterize the organization of records in a

file. We define a database to be a collection of files, a file to be a collection of

records, and a record to be a collection of fields (or data items). Based on these

definitions, we can describe the structure of a record in terms of the number of

data items, the names (or attributes) of the individual data items and the associ-

ated data types and values. In doing so, we can separate the description of the

record away from the actual records and keep the record description in a tem-

plate. The template can later be used for determining and specifying the charac-

teristics of a data item and its relation with other data items in a record. When

records, so specified, are collected to form a file, the file structure would have the

same attributes and similar relations among records in the same file. Because the

structural information is maintained in a single template, a file structure can be

reorganized by simply changing the template. Moreover, additional templates can

be created to organize new files without inducing unnecessary redundancies or

duplication of records. File reorganizations and multiple file organizations using

multiple templates are often needed to reflect new applications and user require-

ments [Ref 7].

The previous MBDS implementation did not support multiple templates:

only a single template was maintaiined. With only a single template. the notion of

a database, as defined, i, reduced to that of a file. Such a reduction on the data-

base can have a severe impact on data manipulations. At a first glimpse, it seems

12

unimportant to differentiate between a database and a file since they both

represent the same collection of records. Upon a careful consideration. however.

we see that records in a file are of a given record type that is specified by a given

template. Records in a database, on the other hand, are of multiple record types

serving many applications. With a single template, however, a database is res-

tricted to serve but one application.

To alleviate the limitation of a single application, the capability for

multiple-record templates has been implemented in MBDS. This implementation

extends the notion of the database and allows a database to have more than one

file. For this implementation, it has been necessary to redesign the template struc-

ture and modify the existing template modules to implement the new template

structure. Before we proceed with the discussion of the multiple templates. let us

first review the data model and data language used in MBDS.

A. THE DATA MODEL AND DATA LANGUAGE

In this section, we will introduce the concept and terminology of the

attribute-base data model which is the data model used in MBDS. and describe

the data language for which users are required to issue requests.

1. The Attribute-Based Data Model

In the attribute-based data model. the data is considered in the following

constructs - database, file. record, attribute-value pair, keyword, attribute-value

range, directory keyword. non-directory keyword, directory, record body. keyword

predicate. and query. Informally, a database consists of a collection of files. Each

file contains a group of records which are characterized by a unique set of key-

words. A record is composed of two parts. The first part is a collection of

attribute-value pairs or keywords. An attribute-value pair is a member of the

13

Cartesian product of the attribute name and the value domain of the attribute.

As an example. <POPULATION. 25000> is an attribute-value pair having 25000

as the value for the population attribute. A record contains at most one

attribute-value pair for each attribute defined in the database. Certain attribute-

value pairs of a record (or a file) are called the directory keywords of the record

(file). because either the attribute-value pairs or their attribute-value ranges are

kept in a directory for identifying the records (files). Those attribute-value pairs

which are not kept in the directory are called non-directory keywords. The rest of

the record is textual information, which is referred to as the record body. An

example of a record is shown below.

(<FILE. USCensus>, <CITY. Monterey>, <POPULATION, 25000>,
{ Temperate climate })

The angle brackets, <,>, enclose an attribute-value I r. i.e., keyword. The curly

brackets. {,}, include the record body. The first attribute-value pair of all records

of a file, by convention, is the same. In particular, the attribute is FILE and the

value is the file name. A record is enclosed in the parenthesis. For example. the

above sample record is from the USCensus file.

The records of the database may be identified by keyword predicates. A

keyword predicate is a 3-tuple consisting of a directory attribute, a relational

operator (=, !=. >. <, >=. <=). and an attribute value, e.g.. POPULATION >=

20000 is a keyword predicate. More specifically. it is a greater-than-or-equal-to

predicate. Combining keyword predicates in disjunctive normal form character-

izes a query of the database. The query

FILE = USCensus and CITY = Monterey) or
FILE = USCensus and CITY = San Jose)

will be satisfied by all records of the USCensus file with the CITY of either

14

Monterey or San Jose. For clarity, we also employ parentheses for bracketing

conjunctions in a query.

2. The Attribute-Based Data Language (ABDL)

The attribute-based data language supports the five primary database

operations, INSERT, DELETE, UPDATE, RETRIEVE, and RETRIEVE-

COMMON. A request in the ABDL is a primary operation with a qualification. A

qualification is used to specify the part of the database that is to be operated on.

Two or more requests may be grouped together to form a transaction. Now, let

us illustrate the five types of requests and forgo their formal specifications.

The INSERT request is used to insert a new record into the database.

The qualification of an INSERT request is a list of keywords with or without a

record body being inserted. In the following example, an INSERT request that

INSERT (<FILE, USCensus>. <CITY, Cumberland>,
<POPULATION, 40000>)

will insert a record without a record body into the USCensus file for the city

Cumberland with a population of 40.000.

A DELETE request is used to remove one or more records from the

database. The qualification of a DELETE request is a query. The following

example is a request that

DELETE ((FILE = USCensus) and (POPULATION > 100000))

will delete all records whose population is greater than 100,000 in the USCensus

file.

An UPDATE request is used to modify records of the database. The

qualification of an UPDATE request consists of two parts, the query and the

modifier. The query specifies which records of the database are to be modified.

The modifier specifies how the records being modified are to be updated. The

15

following example is an UPDATE request that

UPDATE (FILE = USCensus) (POPULATION = POPULATION + 5000)

will modify all records of the USCensus file by increasing all populations by 5.000.

In this example, (FILE = USCensus) is the query and

(POPULATION = POPULATION + 5000) is the modifier.

The RETRIEVE request is used to retrieve records of the database. The

qualification of a retrieve request consists of a query, a target-list, and a by-clause.

The query specifies which records are to be retrieved. The target-list consists of a

list of output attributes. It may also consist of an aggregate operation, i. e.,

AVG, COUNT, SUM. MIN, MAX, on one or more output attribute values. The

optional by-clause may be used to group records when an aggregate operation is

specified. The RETRIEVE request in the following example will retrieve

RETRIEVE ((FILE = USCensus) and (POPULATION >= 50000))
(CITY, POPULATION)

the city names and populations of all records in the USCensus file whose popula-

tions are greater than or equal to 50.000. ((FILE = USCensus) and (POPULA-

TION >= 50.000)) is the query and (POPULATION. CITY) is the target-list.

There is no use of the by-clause or aggregation in this example.

Lastly. the RETRIEVE-COMMON request is used to merge two files by

common attribute-values. Logically, the RETRIEVE-COMMON request can be

considered as a transaction of two retrieve requests that are processed serially in

the following general form.

RETRIEVE (query-I) (target-list-i)
COMMON (attribute-i, attribute-2)
RETRIEVE (query-2) (target-list-2)

The common attributes are attribute-1 (associated with the first retrieve request)

16

and attribute-2 (associated with the second retrieve request). In the following

example, the RETRIEVE-CO.MMON request

RETRIEVE ((FILE = CanadaCensus) and (POPULATION >= 100000))
(CITY)

COMMON (POPULATION, POPULATION)
RETRIEVE ((FILE = US Census) and (POPULATION >= 100000))

(CITY)

will find all records in the Canada Census file with population greater than

100,000, find all records in the US Census file with population greater than

100,000, identify records of respective files whose population figures are common,

and return the two city names whose cities have the same population figures.

ABDL provides five seemingly simple database operations, which are nevertheless

capable of supporting complex and comprehensive transactions. We are also note

that Database files defined herein are therefore different from operating system

files.

B. SPECIFICATIONS OF NEW TEMPLATES

The process of constructing a database is controlled by three operating sys-

tem (input) files namely - the template file. the descriptor file and the record file.

The template file is used to define the template structure. The descriptor file con-

tains the directorv attributes and their descriptor definitions. The record file con-

tains the input records. These files are used by MBDS for the formulation of

record clusters.

To illustrate how the input files are created, let us consider a purchasing sys-

tem. This system consists of purchase-order, part. and supplier records. The rela-

tionships among the three types of records are described in the form of a schema

as shown in figure 1. This schema is normalized and represented as tuples as

shown in figure 2. In this representation. each tuple shows explicitly the names of

17

the (file) templates and the attributes of each template (file). The process of nor-

malization accomplishes two important functions. 1) It captures the data rela-

tion from one file to another file. 2) It provides a form of representation that is

suitable for template specification. Normalizations requires that certain attributes

(therefore. attribute values) appear in more than one file. The order-# in the

purchase-order file, for example, is repeated in the part file and is combined with

part-# to form a unique identifier. Such duplication, however, does not necessary

mean that the attribute value is redundantly stored because normalizations are

concerned with logical structures rather than physical organizations.

1. Template Descriptions

When a database administrator wishes to create a new database, the

administrator begins by preparing a template file. The template file contains the

descriptions of the templates defined in a database. In general. there can be many

databases in the MBDS system. The template descriptions for and the records in

different databases must be separate and disjoint.

The format of the template file for a given database with n templates is

described as follows:

Database name
Number of templates in the database
Template description for template #1
Template description for template #2

Template description for template #n

A typical template description with m attributes is given as follows:

18

Purchase Order

order numbe supplier delivery total cost
number order date date

Suppliers IF

supplier city
name

Parts

part

number quantity price

Figure I - Schema for a purchase order system

4

Purchase order (order number, supplier number, order date,

delivery date, total cost)

Parts (order number, part number, quantity, price)

Supplier (supplier number, supplier name, city)

Figure 2 - Normalized form of purchase order system

schema.

19

Number of attributes in a template
Template name
attribute #1 data type
attribute #1 data type

attribute #m data type

There are three data types - integer, character string, and floating point. They

are represented as i, s, and f respectively.

Having represented the purchasing database, in a normalized form, the

creation of the template file becomes a simple matter of filling in the blanks. The

name of the database is PURCHASING. The template names are Purchase-Order,

Part and Supplier. Thus, the template file for PURCHASING is shown as follows:

PURCHASING
3
6
Purchase-order
template s
order-# s
supplier-# s
order-date s
delivery-date s
total-cost f
5
Part
template s
order-# S
part-# s
quantity i
price f
4
Supplier
template s
supplier-# s
supplier-name s
city s

20

A

In a template description, the first attribute is called the system attribute. A sys-

tem attribute is an attribute whose value is the name of a template. It is used to

identify the records in a given template. Following the system attribute are the

attributes of the corresponding tuples as shown in figure 2.

2. Descriptor Specifications

Our next job is to create a descriptor file. A descriptor is a keyword

predicate of the form. for example, (supplier-name = DEC), (price >= $100). or

(price < $10,000). MBDS recognizes two kinds of keywords: simple keywords (or

non-directory keywords) for search and retrievals and directory keywords for for-

mulating clusters. The descriptor file is an operating- system file that contains

descriptors of directory keyword only. Cluster formulations are based on the

attribute values and value ranges of the descriptors. For example. a cluster that

contains the records in the purchasing database for purchase orders ordered from

a supplier DEC with a total cost of $10,000 and up to $100,000 since June 1986, is

derivable with a set of three descriptors - (supplier-name = DEC). ($10.000 =<

total-cost < 10.000.00), and (order-date = June 1986).

There are three types of descriptors. A type-A descriptor is a con-

junction of a less-than-or-equal-to predicate and a greater-than-or-equal-to predi-

cate. An example of a type-A descriptor is (10.000 =< total-cost < 100.000). For

creating a type-A descriptor, the database administrator needs to specify the

attribute (i.e., total-cost) and the value range (i.e., of 10,000 and up to 500.000).

The value range is expressed in term of upper and lower limits. A type-B descrip-

tor is an equality predicate (i.e.. supplier-name = DEC). A type-C descriptor is

also an equality predicate. However, the values of the predicate are provided by

the input records. Type-C descriptors are converted then automatically to a set of

type-B descriptors with the same attribute name and values corresponding to the

21

value range. For example. if a template has a type-C descriptor with certain

values of purchase-order. part. and supplier, provided by the records. then the

first set of type-B descriptors generated are (template purchase-order), (tem-

plate = part), and (template = supplier).

The rule for specifying a descriptor requires that the attributes of

the descriptors of a given be unique and that the values and value ranges in the

specification be mutually exclusive. A format of a descriptor file that has n

descriptors is given below:

Database name
Descriptor definition 1
Descriptor definition 2

Descriptor definition n

The $ sign indicates the end of the descriptor file. Each descriptor definition in

the descriptor file is expressed in terms of the attribute and its associated descrip-

tor type and data type and followed by the value ranges as shown below.

Attribute Descriptor-type Data-type
Value range 1
Value range 2

Vu alue range k

The value range is expressed in terms of the lower and upper limits. For type-B

and type-C descriptors, there is the exact value. The placehold for the upper

limit is used for holding the exact value. The lower limit is not applicable. The

value of the lower limit is therefore indicated by an character. The C character

signifies the end of the descriptor definition. For example.

22

PURCHASING
template C

Purchase-order
Part
Supplier

total-cost A f
1000.00 100000.00
100000.00 500000.00

order-# A s
#1 #50
#50 #100
#100 # 1000

price A f
1000.00 50000.00
50000.00 500000.00

supplier-name B s
DEC
IBM
ISI

city B s
Monterey
San Clara
San Josa

$

3. Database Records

Once the template and the descriptor files are defined, data records

can be specified accordingly. The record file can be prepared in separate files for

subsequent loading. The format of a typical record file is given below.

Database name

Template name #1

Record # 1 for template #I

Record #2 for template #1

Record #n for template #1

23

Template name -2

Record #1 for template #2
NRecord #2 for template #2

Record #n for template #2

$

The database name identifies the database to which the templates and the records

belong. The A sign signifies the beginning of a new template followed by the

name of the template. All records below the template name belong to that tem-

plate until another ©t sign or a $ sign is encountered. The $ sign indicates the

end of the entire record file. Each record contains the values of the attributes in

the template. Each value in a record is separated by at least one space. For
V

example, a record for the purchase-order template in the database PURCHASING

has the following attribute-value pairs - (see template file section B.1 above):

<order-#. 26>, <supplier #. 51>, <order-date, 18 May 1981>,

<delivery-date., 22 Nov 1985>, <total-cost. $191,500.00>

Note that in the template file. the first attribute is the attribute name of a tem-

plate whose value is purchase-order which can be represented also as a attribute-

value pair (i.e.. <template. purchase-order>). The template attribute is omitted

from the record: instead, it is placed above the records. if we extract the values of

each attribute-value pair, we have

26 51 18-May-1985 22-Nov-1985 $191.500.00

which is the first record of the purchase-order template in the purchase-order

database. An example of a more complete record file as follows:

24

PURCHASING

Purchase-order
26 51 18-Mav-1985 22-Nov-1985 191500.00
31 51 25-Jun-1985 14-Apr-1986 381.900.00

Pa.'t
26 V780 VAX-11/780 1 91500.00
26 M780 Memory 8 42000.00
26 DS1 RA81 3 58000.00
31 V8600 VAX-8600 1 381.900.00

Supplier
51 DEC San Clara
$

C. LOADING THE DATABASE

The procedure for the loading of the database is composed of three phases

- the database definition, the record handling, and the record clustering and

placement. Phase I involves the specifications of the record template. the descrip-

tor and the record files as discussed in the previous section. This section deals

with the remaining two phases. Operational details are given in Appendix A.

1. Record Handling

In the MBDS implementation. the handling of input records is

menu driven. During the system startup, an interface process is invoked for user

interaction. This process begins by displaying the main menu and waits for a

selection response by the user. The selection of an entry is made by typing the

appropriate key as indicated and by following it with a return key. A scenario for

loading the database is given below. For the purpose of annotation, each opera-

tion is numbered. The response for the appropriate action is given in the bold face

immediately after the prompt character. A single prompt character is given for

each level of services.

25

-%

The names of the input file, described in the previous section are

template.f. and descriptor.f and recordl.f. If there are more than one record file,

record files named recordl.f, record2.f... can be loaded repeatedly at step 7. Step

8 begins the execution. This step and the subsequent steps are included to show

how the database can be manipulated. The file request.f has been prepared for

this purpose. It contains a list of transactions (known as traffic units) as shown in

step 11. In step 11. a retrieval request is selected. The result of this transaction is

displayed.

.2

". 2

1 - What operation would you like to perform'
g) - generate database
I) - load database
e - execute requests
x - exit to operating system
z) - exit and stop MBDS

>1

2 - What operation would you like to perform?
t - load template and descriptor files
r) - mass load record files
x) - return to previous menu

>>t

3 - Enter name of file containing template information:

>>> template

4 - Enter name of file containing the descriptors:

> > > descriptor.f

5 - What operation would you like to perform?
t - load template and descriptor files
r - mass load record files

- return to previous menu

>> r

6 - Enter name of file containing records to be loaded:

>>> recordl.f

7 - What operation would you like to perform?
tj- load template and descriptor files
r mass load record files
x) - return to previous menu

>> x

8 - What operation would you like to perform?
(g) - geneaedtbs
) - load database

e) - execute requests
x - exit to operating system
z - exit and stop MBDS

> e

9 - Do you want to wait for responses? (y/n)

27

10 - Enter type of subsession you want:
r) - REDIRECT OUTPUT: select output for answers
d) - NEW DATABASE: choose a new database
n) - NEW LIST; create a new list of traffic units
m) - MODIFY; modify an existing list of traffic units
s)- SELECT; select traffic units from existing list
_) - OLD LIST; execute traffic unit in existing list

p) - PERFORMANCE TESTING
x) - EXIT; exit and return to main menu

>>s

11 - Enter name of traffic unit file:

> > >request.f

List of executable traffic units
0) - RETRIEVE(template=Part) (order-#,price)]

~1)- INSERT (<template,Supplier>, <supplier-#,62>.< supplier-name,IBM>,
<city.San josa>)]

2) -[DELETE ((template=Purchase-order) and(oder-# =6225))]
(3) - [UPD ATE ((template= Part) and (oder- #=62)) < price=49500.00 >

12 - Select optionstnum) execute traffic unit number
d) display traffic units in list
n) enter a new traffic unit
x return to previous menu

>>>>0

order-# = 26
price = 91,500.00

order-# = 26
price = 42,000.00

order-# = 26
price = 48,000.00

order-# = 31
price = 381.900.00

13 - Select options
(num) execute traffic unit number_ (d)d dispaly traffic units in list

(n) enter a new traffic unit

>>>> x

14 - Enter type of subsession you want:

28

r) - REDIRECT OUTPUT: select output for answers
d- NEW DATABASE: choose a new database
n NEW LIST: create a new list of traffic units

(m) - MODIFY: modify an existing list of traffic units
s) - SELECT: select traffic units from existing list
o) - OLD LIST: execute traffic unit in existing list
p) - PERFORMANCE TESTING
x) - EXIT; exit and return to main menu

> >x

15 - What operation would you like to perform?
(g) - generate database
1) - load database
(e) - execute requests
x - exit to operating system
z - exit and stop MBDS

>.z.

2. The Record Clustering and Placement

To provide a better insight on the database loading process, we need

to explain some aspects of the record clusters and placements. Formal discussions

of these algorithms are given in Ref. 3. For the purpose of our discussion, let us

consider a simpler version of the descriptor file and the record file of our purchas-

ing example. The descriptors and the record, taken from the example, are rewrit-

ten in a more descriptive form below:

Purchase-order records:

(<order-# ,# 26>.< supplier-#,# 51> ,<total-cost,191.5K >)

(<order-#,# 31> .<supplier-#,# 51 >,<total-cost,381.9K>)

Part records:

(<order-#,# 26>,<supplier-#,# 51 >,<price,19..5K>)

(<order-#,* 26>.<supplier-#,# 51 >,<price,42K>)

Supplier record:

(<supplier-# 1>,<supplier-name.DEC>,<city,San Clara>)

29

Type-A descriptors and their descriptor ids:
(1K =-total-cost , 100K) D1
-100K =< total-cost < 500K) D2
:=1 =< order-r- *50) D3
450 =< order-# < #100) D4

Type-B descriptor, its descriptor id:
(supplier-name = DEC) D5

A Type-C descriptor on templates only:
(template purchase-order) D6
template = part) D7
template = supplier) D8

First, we conve:t the type-C descriptor into a set of type-B descrip-

tors. For each type-A and each type-B, we assign a descriptor id. Thus, we have

D1 through D8 as indicated above. Now we examine the records. The first

purchase-order record has the keywords <order-#,#26>. <supplier-#.57>, and

<total-cost,191.5K>. We see that the first keyword is in D3. The second keyword

*1 has no descriptor because supplier-# is not a directory keyword. It is used simply

as a link to Part and Supplier records. We also see that the third keyword is in

D2 and finally the template for Purchase-order records are in D6. By identifying

the keywords of descriptor ids, we note that the record is in the cluster formed by

the descriptor set {D2, D3., D6}. The following are the clusters and records of the

clusters satisfying their descriptor-id sets.

Cluster I D2, D3, D6} records #1, #2
Cluster 2 Dl, D3, D7} records #3, #4
Cluster 3 {D5, D8} records #5

Clusters that are formed in this manner, are distributed across the

backends for storage. Details of the cluster placement algorithm are discussed in

Ref. 3. The same record clustering and placement technique can be used for

search and retrieval of records in a cluster.

30

III. MESSAGE-PASSING FACILITIES

The MBDS software has been developed in stages and in versions: each sub-

sequent version incorporating some updates. After incorporating the updates. the

updated version becomes a new baseline. Updates within a baseline include the

implementations of the planned activities and are often conducted in parallel.

The earlier versions of MBDS began with a simple system which has finally

developed to a complete prototype that runs on the VAX and PDP configuration

[Ref 3-61. The recent implementations of MBDS along with the significant

updates in each version are as follows:

VerE.4 Prototype version - the controller software.
VerE.4a Prototype version - the backend software.
VerE.4b Ohio State implementation that runs on a single UNIX system.
VerE.4T NPS implementation of 4b with multiple record templates.
VerE.4d Ohio State implementation of 4b with multiple backends.
VerE.4e NPS modification of 4d with broadcasting and templates.
VerE.4f NPS implementation of 4e with the disk I/O.
VerE.4g NPS implementation of 4e with the retrieve common primary
operation [Ref 8[.

The implementation of multiple record templates (VerE.4T) was first imple-

mented on the VAX-11/750 running under the Berkeley UNIX 4.2 BSD. This has

subsequently been updated into VerE.4e. VerE.4d is the Ohio State version of the

MBDS software that runs on the VAX and SUN-workstations. In VerE.4e. The

VerE.4d has been downloaded to run on the ISI-workstations. Because of the

competability of the VAX. of the SUN and the ISI systems, the downloading

effort reduced to changing the host names of the ISI-workstations so that the

MBDS software could be recompiled and run on the ISI-workstations.

31

In this chapter. we describe the niessage-pa~sing facilities of MBDS. This

discussion is given in three parts. First. we discuss the ISI-workstation

configuration. which are configured specifically to meet the MBDS requirements.

These requirements include the hardware and the software supports for large-

capacity disks, virtual memory. C-language programming. process-oriented

operating environment, and interprocess communications. Next, we present an

overview of the MBDS software structure and show functionally how messages are

being handled in MBDS. Finally. we discuss the communication protocols. This

discussion includes the message-passing mechanisms for communications between

any two processes within the controller and between a controller process and a

backend processor. The handling of the communication between the processes of

workstations is different. The difference is to be discussed from points of view of

the operating system and the MBDS software.

A. THE ISI-WORKSTATION CONFIGURATION

Figure 3 shows the MBDS hardware organization. of eight ISI-workstations

with their disk subsystems. The ISI-workstations are interconnected via an Ether-

net broadcast bus. ISI-8 is shown to be the controller with ISI-1 through 7 acting

as backends. This configuration, however, is temporary due to the shortage of the

Ethernet hardware interface boards and cables. The final configuration will have a

VAX-11/750 serving as the controller and eight ISl-workstations as backends.

As shown in Figure 3, the user access is accomplished through a host com-

puter to the controller. When a transaction (a single request or a sequence of

requests) is received, the controller broadcasts the transaction to all the backends.

Since the database is distributed across the backends, all backend processors exe-

cute the same request in parallel. Each backend maintains its own request queue.

32

'p. .p ... Nv~ P -

i l--Controller

-Backend N

;
Controller

Fgr3TeMtBce Backend 2t

Host Transaction

Aplc th Oe rstatosaemirpoesr-aenoptesmnfc

Programs S oslte io ns I Contro ler wis

cofgue ron aM602 -roer o aVM bu . -M"t CPU

Backed N Controller

Etherne interface.

Figure 3. The Multi-Backend Database System.

As soon as a backend finishes a request, it sends the result back to the controller

and continues to process the next request independent of the other backends.

1. The Hardware Organization

The IS-workstat ions are microprocessor-based computers manufac-

tured by Integrated Solutions. Inc.. a NBI company. Each workstation is

configured around a MC68020 processor on a VME bus, two-.Mbyte CPU

memory. a 106-Mbyte system disk drive. a 515-Mbyte database disk drive. and an

Ethernet interface.

The Motorola MC68020 is a 32-bit processor with 32-bit registers

and data paths, an internal instruction cache, and the pipeline instruction execu-

tion. This processor also supports a 256-Mbyte virtual address space and up to

16-Mbyte physical address space with demand paging. Translation from virtual

33

address to physical address is based on 4-Kbynt pages. The page table entries are

kept in a high-speed buffer memory and maintaiin the most recently used transla-

tions. When a page is needed for execution. the hardware sequencer pulls the

translation from the page table into the translation buffer and automatically

updates both the access bit and the modified bit as required. Each page entry has

additional protection bits indicating no access, read-only access, or read/write

access. If a program attempts to execute a memory page that is not permitted by

these protection bits, the hardware prevents the cycle from occurring and causes a

bus error.

Each workstation has two CDC disk subsystems. A 106-Mbyte 5-

1/2-inch Winchester drive is used to support the operating system and the MBDS

software. The other 515-Mbyte 9-inch Winchester drive is used as the database

store. The database drive has seven disks mounted on a spindle. The drive motor

rotates the disks at 3600 rpm. The maximum seek time for a cylinder is 45 msec

and the seek time for a single track is 5 msec. There are 25 heads: a servo head to

control the actuator positioning, and 12 pairs of read-and-write heads - one for

read. one for write - for data transfer to and from the disks. Each drive has 711

cylinders., 12 tracks per cylinder, and 60 Kbytes/track.

An Ethernet interface is also provided for each workstation for con-

nection to an Ethernet cable via a transceiver to form a network which encom-

passes the VAX-11/750 and the eight ISI-workstations.

In addition. four of the ISI-workstations are equipped with graphics

options which include the display memory and the graphics controller. a high-

resolution monitor and a three-button mouse. Although the graphics support is

intended to assist the MBDS development on the ISI-workstations. future MBDS

implementation may well include graphics for database applications.

34

2. The Software Environment

The ISI-workstations are operating under the Berkeley UNIX 4.2

BSD with enchancements made to support grahpics, real-time. and networking

applications. The Berkeley UNIX 4.2 BSD is the Berkeley version of the UNIX

operating system designed to support the VAX family of computers. This version

includes the extended network and the interprocess communication facilities and

many new features. For the MBDS development, we have found this environment

to be especially desirable, because the UNIX-based systems are portable and run

on a wide range of computers from microprocessors to large mainframes.

B. THE MBDS PROCESS STRUCTURE

Figure 4 shows the MBDS process structure. MBDS. as a message-oriented

system. is composed of independent processes. The processes are designed to sup-

port the database functions of the controller, these processes are the request

preparation. insert information generation. and post processing. Also running in

the controller, is the user interface process. For the backends, these processes are

the directory management, record processing and concurrency control. Each of

the backends run identical processes. In addition. common to the controller and

the backends are two communication processes. All MBDS processes are created

at the system start-up time and run throughout the MBDS session.

1. Controller Processes

The request preparation process receives a request from either the

user interface processor or the host computer. parses the request and checks it for

syntax. The request is then classified according to its type and broadcasted to the

backends. For a retrieve request with an aggregate operator such as sum. average.

max or min. the aggregate operator is also sent to the post processing process

35

M: %

[The Controller ,

b ost risen In formation equest
Processing Generation reparatto

Broadcast Bus

Put PC GtP

tht h od eorscnbo adfr deltin ndta henwreod nb

Processin lanagernen

Each Backend

Figure 4. The MBDS Process Structure.

before being broadcasted to the backends. In the case of an update request, the

request preparation process generates a sequence of requests to the backends. so

that the old records can be marked for deletion and that the new records can be

- . inserted.

The insert information process supplies the additional information

requested by a backend while processing an insert request. This information,

which can only be determined by the controller, includes the cluster id of the

36

cluster to which the recordt- to be in:ertfd may belong. The insert information i,!

returned to the backend selected by the placement algorithm, and not necessarily

to the requesting backend. If the record to be inserted involves new descriptors

the new descriptor and the identification number are broadcasted to all the back-

ends.

The post processing process collects the results from each of the

backends. performs any additional processing as required. and delivers the final

result to the requesting host or the user interface process. Should any aggregate

operators be received from the request preparation process. aggregate operations

will be performed prior to the delivery.

2. The User Interface Process

For the direct user interaction without going through the host. the

controller, provides a user interface process to control the individual NBDS ses-

sions. A MBDS session is established with a session request from the user. If the

session is granted. a user interface process is created to handle the transactions

and it is terminated when the session is finished. The user interface process

begins by displaying a main menu and then waits for a selection response from

the user. A selection response by the user is made by typing the appropriate key.

and by following it with the return key. The options provided to the user include

the loading of the database from the existing files, generating a new database and

executing the user requests. A detail description of the database operations is

given in appendix A.

3. Backend Processes

The directory management process. as a backend process, receives

requests from the controller. Its major functions are the directory search, the

directory maintenance, and the determination of the secondary-storage record

37

V S

addresses. For managing the database. the director management process main-

tains a set of directory tables: namely. the attribute table. the descriptor table.

and the cluster definition table. The attribute table contains attributes of the

database which identify the characteristics of the database. This also links to the

descriptor table. The descriptor table consists of a set of predicates which define

the values of the attributes and the corresponding descriptor-ids. As discussed in

chapter 2, there are three types of predicates: the predicates that define a range of

attribute values, the equality predicates. and the predicates that define a subset of

all unique attribute values in the database. Finally, the cluster definition table

contains cluster-ids and descriptor-id sets whose descriptors define a cluster, and

addresses of the records in the cluster.

The record processing performs the disk access operations. The

currency control process allows concurrent accesses of both director. data and

base data. Locking mechanisms are provided to ensure their consistency and

integrity. Aside from the four basic requests: insertion, deletion, retrieval, and

update. there are many more operations derived from the combinations of these

basic requests. Interdependencies among the directory management process,

record processing process and concurrency control processes are discussed in detail

in references 3-6.

4. Communication Processes

The communication between the computers is achieved via the Eth-

ernet. MBDS provides a software abstraction to the Ethernet for both the con-

troller and the backends. The abstraction consists of two complimentary

processes. The first process, get-net. gets the messages from the other backends

and the controller off the Ethernet. The second process. put-net, is used to send

messages to the other backends or to the controller or to broadcast the messages

38

to all of theim. Every computer. \ 1.etit i- :., c,,:trollcr or a bla,'ki ., ha: it-

own get-net and put-net processe. Iii a 1di' lon To tn, processes described ini !P-

vious sections. these communication processe- add up to a total of six processes

for the controller and five for each backend.

When it gets a message. the controller get-net process first deter-

mines the message type. and then re-routes. the message to the appropriate con-

troller process. On the other hand. the controller put-net process receives a mes-

sage from the other controller processes aid broadcasts the message to all the

backends. For the backends. the backend get-net process gets a message from

either the controller or other backends,. examines its message ty.pp, ani dispatches

the message to the appropriate backend processes. The backend ,u-, rc('

receives a message from the other backend process(e'-. Depending oi the message

type, messages are either broadcasted to all other backends or sent directly to the

controller.

C. COMMIUNICATION PROTOCOLS

To support the MBDS message-passing abstraction. there are three

software modules to handle specifically three types of communications: namely.

N interprocess communication (that is the communication of processes within the

same coiputer). interprocessor communication (that is the communication of

processes in difference computers) and broadcasting (that is the communication

among processes in one computer to all other computers). These modules are

catered to the Berkeley UNIX 4.2 BSD implementation. Interprocess and inter-

processor communications under the 4.2 BSD are established via sockets. Each

socket is characterized by a socket type and a communication domain. The 4.2

BSD supports three socket types ;i d two communication domains. The socket

39

s : - .- .. -.- ,.

types are used to define the communication protocok. A stream socket supports

the transmission control protocol and the internet protocol commonly known as

TCP/IP which are the DARPA standard communication protocols. A datagram

socket supports the user datagram protocol and the internet protocol referred to

as UDP/IP which are used for Ethernet communications. The UDP/IP protocols

are not promised to be reliable in that the positive acknowledgement, timeout,

and retransmission are not provided. Finally. a raw sockets support protocols to

suit your own requirements. It is used for the development of non-standard net-

works. The two communication domains supported under the 4.2 BSD are the

UNIX domain and the Internet domain. To put it simply, the UNIX domain is

used for interprocess communications and the Internet domain is used for inter-

processor communications.

1. Interprocess Communications

For the communication between the processes within the controller

or a backend. a datagram socket in the UNIX domain is used. At the system

startup time. each process creates its own socket and connects the socket to the

other sockets which communications are required. Once the socket connection is

established, sockets can exchange messages by using the send and receive pro-

cedure calls.

The communication of two processes are based on a client/server

model. The action required to establish the communications is asymmetric. The

client process is required to establish a connection to the server's socket which is

known. The server must accept the connection so that the client's socket can be

made known. The server process begins by creating a socket with his own well-

known socket address. It assigns a name to the socket by a binding process and

listens for a connection from a client. When the connection from a client is made.

40

the server process may accept the connection. If the serveor accepts the connection.

communication between the client and the server is established, or else the server

will wait. Meanwhile. a client may request service from the server by connecting

to the server socket. The processes of creating a socket, binding it, listening for a

connection. and accepting a connection as well as making a connection. are sys-

tem calls. This procedure can be summarized as follows.

On the server side:

my-socket = create(domain, socket-type):

bind(my-socket, server-name);

listen(my-socket):

while forever

{
his-socket = accept(my-socket);

if(his-socket is connected)

save his-socket for future communication

and return

On the client side:

my-socket = create(domain, socket-type):

bind(my-socket. client-name):

connect(my-socket. server-socket):

To establish the communication sockets in MBDS. a common rou-

tine is provided. This routine is table driven. There are two separate sets of

tables, one for the controller and other is common to all the backends. The tables

are the process-name table, the connection table and the socket-name table. The

41

process-name table contains the name of the processes represented as an array. It

is used to determine the name of the calling process. The connection table is a

square matrix whose order corresponds to the size of the process-name table. This

table is used to determine whether the calling process is acting as a server or a

client so that proper action can be taken to establish the required connection.

Finally. the socket-name table is used to save the name of the established sockets

for future reference. For example. A backend process-name table is given as fol-

lows:

concurrent control
backend put-net
backend get-net
record processing
directory management

The backend connection table is also given as follows:

n. n. c, c, c
n, n, c. c. c
a. a. n, c. c
a, a. a. n. c
a. a. a. a, n

The element (ij) represents the action required by the i-th process in order to

establish communication with the j-th process. The action elements are defined

as follow:

n - no action required: c - requires a connection to the destination

socket: a - requires the acceptance of the connected socket

If the calling process is the concurrent control process. it can be seen from the first

row of the connection table that the concurrent control process is a client process

42

to the backend get-net process. the record processing proces: and the director

management process. By examining the socket-name table of the respective

processes. the concurrent control process will be able to establish the required con-

nections.

2. Interprocessor Communications

In this section. we present the interprocessor communication facili-

ties in two areas: 1) the communication of two processors, and 2) the broadcast-

ing. In general. the datagram sockets in the Internet domain are used for the

interprocess communication in a distributed environment. The process of estab-

lishing socket connections discussed in the previous section is the same except that

the socket address and the message handling are different.

In the Internet domain, a socket name contains an internet address

and a port number. For MBDS. the Internet address is obtainable using the

gethostbyname library call and the port number is pre-assigned. Unlike the inter-

process communication facility where processes are communicating directly to one

another. the interprocessor facility routes the messages through get-net and put-

net processes. For example. process a in processor A wishes to communicate with

process b in processor B. Process a must first sends the message to the put-net

process in processor A. The put-net process. in turn. routes the message to the

get-net process in processor B. In processor B. the get-net process dispatches the

message to process b.

In the previous version of MBDS. the broadcast feature was simu-

lated. The simulated broadcast approach is time-consuming and requires the

same message be sent repeatedly to every processor in the network. More

recently. the true broadcast feature has been implemented. The implementation

itself is relatively simple. We have discovered that when a message is broadcasted,

43

the message is sent simultaneously to every host in the network including the

sender and may cause the message to be lost. To correct the problem. we first

record the name of the broadcasting processor. When the broadcast message is

received, the message is discarded by the broadcasting processor.

44

IV. THE DISK INPUT/OUTPUT PROCESS

The disk input/output (disk I/O) process is a new process of the MBDS

backends that stores and retrieves data on disks. In the early prototype implemen-

tation of MBDS, the disk I/O function has been an integral part of the record

processing process in the backends. In addition to performing operations such as

record selections. attribute-value extractions, and aggregate functions, the record

processing process is also burdened with the handling of the physical disk I/0

operations. Because the prototype is set out to prove the validity of the multi-

backend design where relative performance has been the major concern, the abso-

lute performance has not been of major concern. Thus, efficient disk I/0 han-

dling routines has been overlooked. But now, having proved the design concepts

of MBDS and having established the performance gains achievable through the

multiplicity of backends, we consider methods to improve the I/0 efficiency.

In the present record processing process. the disk I/O operations are simu-

lated as ordinary files. As ordinary files. the operating system imposes many

layers of software. access methods, and buffers which MBDS has already pro-

vided for. Such duplications of software have placed unnecessary constraints on

the size of the records and limited the capability for real-time access.

In this chapter, we present the design and the implementation of a disk I/0

process. The presentation is given in three sections. First. we discuss the design

considerations that include the requirements. the alternatives and the portability

issues. Second, we discuss the design of the disk I/O process. Included in this dis-

cussion are the message passing interface, the message queuing strategy. and the

45

'%V%

I/O processing algorithms. Finally. we discus-; The implementation and tht

integration of the disk I/O process as an added process in the backend.

A. DESIGN CONSIDERATIONS

In the early prototype MBDS implementation, the input to the record pro-

cessing process comes from the directory management process. The input is in the

form of a request indicating the type of the request and a set of addresses where

the relevant data can be found. Upon receiving the request, the record processing

process allocates the required buffers and processes the request according to the

request type. Associated with every request, there are two sets of buffers: a track

buffer which contains the relevant data read from a disk as specified by the set of

addresses in the input, and a result buffer which contains records that satisfy the

request after being processed. Each set of buffers is self-contained, i.e.. it is com-

plete with request identifications, addresses. and status. For processing of the

records, the track buffer provides the input and the records satisfying the request

are placed in the result buffer. When the operation is completed, the results from

the result buffer are returned to the controller for post-processing. In the case of

an update request, the result buffer is sent back to the appropriate backends to be

written on the disk.

Although the technique of buffering provides a high level of data abstraction

and allows requests to be processed concurrently and independently, the degree of

concurrency and independency is hampered by having to wait for the completion

of the physical I/O. which is operating system dependent. The I/O operations

under the Berkeley UNIX 4.2 BSD are synchronous. that is, when an I/O request

is initiated via a call to the operating-system read/write routine, the return to the

system call is blocked until the I/O operation is completed. If the I/O operation

46

requires a large block of data. which i! generally the case in MBDS. an excessive

among of waiting time is wasted for the I/0 completion. Thus. one of the most

important requirements for the design of the disk I/0 process is that the disk I/O

operations be asynchronous with respect to the record processing process, so that

the record processing process may continue to process requests while the disk I/O

operations are being completed. We now examine our design objectives for the

disk I/O process, the design alternatives that we have considered and the porta-

bility issues that have guided our design.

1. Design Objectives

The primary objective for the design of the disk I/O process is to provide

effective disk I/O operations. For effective disk I/O operations, we must first

overcome the deficiencies that existed in the previous implementation and then

device new algorithms for accessing the database disks. As discussed in the previ-

ous section, the disk I/O operations must be made asynchronous in order to allow

the record processing process to operate independent of any pending disk I/O.

Since I/O operations are synchronous under our current version of the operating

system, we must find ways so that disk I/O operations become asynchronous. We

must remove layers of unnecessary software and duplicated buffering so that the

disk I/O can be performed in real-time. We must provide new algorithms so that

I/O operations can be done continuously and smoothly without excessive seek

time. Finally, we must also provide the support for multiple blocks of data on a

single request without having to repeat the same request several times for several

blocks.

The objectives of the design of our disk I/O process for effective I/O disk

I/O operations can be summarized, therefore, as follows:

47

S."..-" .

(1) the disk I/O operations be asynchronous with respect to the record

processing process,

(2) the ability to access the disk in real-time,

(3) the provision for fast and efficient disk access strategies,

(4) the ability to read one or more blocks of data on a single request,

(5) the uniformity of message-passing interface.

2. Design Alternatives

With the above design objectives, we consider three different design

alternatives for the design of the disk I/O process. They are:

(1) an intelligent driver approach,

(2) the forking of processes for disk I/O. and

(3) an added backend process.

The intelligent driver approach involves the development of a device driver

tailored for MBDS operations. It includes the support for an efficient disk access

algorithm and functions such as record selections and attribute-value extractions

so that with a single call to the drive, records which satisfy a query can be

retrieved or updated. As a driver. I/O operations can be made asynchronous.

Furthermore, features such as real-time access, interrupts and error reco,'ern. can

be facilitated. However. device drivers must be written and install for a particular

operating system. For different operating systems. the requirements for developing

a driver are different. Aside from the portability consideration. this approach

represents a radical departure of the MBDS design. The design of MBDS software

is based on well-founded engineering principles and requires the MBDS software

to be easily written and maintained. For these reasons, the intelligent driver

approach is, thereby. rejected.

48

V

The second alternative is the forking of a processes for the disk I/O.

Forking is commonly used in UNIX to create a new process via the fork (system)

call. When a fork call is executed. the calling process is split into two executing

processes in a parent/child relationship. The child process runs in the same

environment as the parent. Communications between the parent process and the

child process is possible via an interprocess channel called a pipe. This mechanism

can be used by the record processing process to create a child process to handle

the disk I/O operations. The major drawback in this approach is that a fork call

is required for every disk I/O. As a result. the amount of overhead for creating

the child processes can be excessive. Because of this, the alternative of forking

processes to handle the disk I/O is no longer being considered.

The third and final alternative, which has been adapted. is the addition

of a disk I/O process on the backend processor. The disk I/O process becomes the

sixth backend process in MBDS. The disk I/O process has two functions. The

first function is to read a block of from a disk and the second function is to write

a block of data to the disk. When the record processing process needs to read or

write data on disk. it sends a message to the disk I/O process to perform the I/O

operation and continues with other processing tasks. A complete design of the

disk I/O process is discussed in the next section.

3. Portability Considerations

From the portability standpoint, the I/O operations is inherently depen-

dent on the hardware and the operating system. This is because different devices

require different device drivers and device drivers are an integral part of the

operating system. For a database system. where the disk I/O plays a key role in

storing and retrieving information on the storage device, there is no way that the

hardware and operating-system dependencies can be totally avoided. The best

40

that we can "do is to develop techniques to miniimize the amount of hardware and

operating-system dependencies. As discussed in chapter I. the technique of

abstraction and isolation is often used for this purpose.

For the handling of the disk I/O in the disk I/O process, we support the

use of a raw I/O device. The raw I/O is a mechanism provided by the operating

system to transfer information directly between the user buffer and the device

without the use of system buffers and (2) in a block size as large as the calling

process wants to request. This approach involves setting up a special characters-

oriented device called the raw device and uses the standard seek, read, and write

system calls for subsequent accesses.

To minimize the amount of dependencies, we develop two high-level rou-

tines: one to setup the raw device (e.g., open(disk)). the other to read from or

write to the disk (e.g.. do-disk-io(read, data, here) or do-disk-io(write, data,

there)). The disk I/O process which is independent of the hardware and the

operating system. calls these high-level routines to perform the required opera-
tions. The routines are never-the-less operating-system dependent (e.g., seek.

read, or write system calls). They have been localized and can be rewritten for

other operating systems.

B. THE DESIGN OF THE DISK I/O PROCESS

Figure 5 shows a functional block diagram of the disk I/O process. The pro-

cess begins at block 1 to perform the initialization function. This function includes

establishing the communications with other backend processes, setting up the

disks for the raw I/O operations, and initializing the data buffers and the 1/0

queues. After initialization, a routine to receive a message is entered at block 2.

The message-receiving routine receives a message sent by the other backend

50

ENTER

initiali-
zation

5

received
IN- message

3 Is 0
h r n

yes yes

es message

-- nono

quueu

yes

7
Merge receivin

queue to appro-
riate process--

8 1 Figure 5

Get next
processing Functional Diagram
e Disk I/0 Process

1I/0 processing

, 51

] " '" - -

processes and returns to the caller an indicator that indicating whether or not a

message has actually been received. If a message has been received and the nes-

sage type is "stop". the disk I/O process terminates; otherwise, a routine to queue

- the received message is entered at block 5. The received-message-queuing routine

parses the message into a disk I/O queue element in the form of a quintuple

(Sender. Request-id. Address, Operation. Block-pointer) and maintains a receiving

queue of such quintuples. The disk I/O process continues to receive and queue

additional messages as long as the receiving queue is not full. When the receiving

queue is full. the entire receiving queue is merged into the appropriate processing

queues. To merge the elements of the receiving queue with the appropriate pro-

cessing queues. the elements are first separated by disks (if there are more than

one disk connected to the backend processor) addresses. For each active disk. the

get-next-processing-element routine is entered to choose a queue element from

each processing queue that satisfies the chosen disk access strategy. After the

queue element is selected, the I/O processing routine is entered to carry out the

I/O operation as specified. Upon completion of the I/O operation. a message is

returned to the requesting process with the result.

As indicated in figure 5. the entire program consists of three loops. The inner

loop that encompasses blocks 2,3, and 10. is the message-wait loop. This loop is

entered when there is no pending messages. It incorporates a timeout feature so

that process can continue when the timeout occurs. The center loop encompasses

blocks 2 through 6 and is the message-queuing loop. This loop is designed to

queue up the messages as received until the queue is full. Once the queue is full.

the queue may be merged and sorted to suit the required disk access strategy. The

outer loop is the processing loop. This loop encompasses almost the entire pro-

gram. After an I/O operation is performed for each active disk. the center

52

^0

message-queuing loop is re-entered. If there are no further messages. the message-

wait loop will timeout again and the IO processing will continue.

1. The Message-Passing Interface

Since the sole function of the disk I/O process is to handle the disk I/O.

communications are needed only with those processes that require disk accesses.

At the present time, that process is the record processing process. Should the

directory management process be required. in the future, to store and retrieve

directory data on disks. the disk I/O process can easily be extended to provide the

same service. Recall that in chapter III. we have discussed the interprocess com-

munication facility which is used for communication between processes in a back-

end. Recall also. that communication sockets are established at the MBDS startup

time and subsequent communication is done using high-level send and receive

calls. When the record processing process needs to store or retrieve a record, a

message is send to the disk I/O process. The disk I/O process. in turn, performs

the required operation and send a message back. The information that pass back

and forth between the two processes is contained in the message format.

A message consists of a message header and a message body. The mes-

sage header identifies the sender. the intended receiver, and the message type. The

message body contains the message itself. The message type indicates the type of

the request. There are three types of requests: 1) a request to read one or more

blocks of data from a disk, 2) a request to write a block of data onto a disk, and

3) the stop message which requests the disk I/O process to terminate. For a read

request. the message body contains the request-id and one or more addresses

where the relevant data can be found. For a write request. the message body con-

tains a request-id. an address where the data is to be written followed by the

data. Both the request-id and the address are required for the identification of the

53

N{

track and the result buffers as dkcussed in section A. When the I/O operation has

been completed. the request-id and the address field must be return in their origi-

nal form along with the results so that the record processing process can identify

the proper buffers which has been allocated prior to the request for disk I/O.

2. The Queuing Strategy

To enable the implementation of a disk access algorithm, the disk I/0

process maintains one of each disk, a receiving queue and a set of processing

queues. one for each disk. When a message is received, the message is parsed into

a disk I/O queue element. The queue element is represented as a quintuple

(Sender, Request-id. Address. Operation, Block-pointer). Each quintuple is asso-

ciated with a single address. For a read request with more than one address, the

request is parsed into a sequence of quintuples, as many quintuples as there are

addresses.

The receiving queue is a list of quintuples. When the receiving queue is

full. the entire receiving queue is merged into the appropriate processing queues.

After each mergence, the receiving queue becomes empty. To ensure the process-

ing of the I/0 requests. the merging of the receiving queue can be performed

regardless of the condition of the receiving queue. It is done by mean of the

timeout feature of the message-wait loop. When the timeout occurs, the current

status of the receiving queue is merged and become eligible for I/0 processing.

The timeout feature also ensure that no message in the processing queue remains

unprocessed.

3. The 1/0 Processing

The processing of I/O is based on a disk access strategy. For this version.

We have implemented a simple scheme to choose a queue element whose physical

address lies in the direction of the access arm. Once the queue element is selected.

* 54

i:-5.-

- r Y*'*-~ *

the queue element is removed from the processing queue. The required I/O opera-

ti, is based on the information in the selected quieue element. Recall that the

queue element is a quintuple of the form

(Sender, Request-id, Address, Operation. Block-pointer).

The address field contains the disk number, the cylinder number and the

track number. The disk number is used to specify the desired disk drive. If the

backend processor has more than one drive, a separate process queue is provided

for each drive so that all the drives can be accessed concurrently. The cylinder

and track number are logical addresses suppled by the controller. They are used

for deriving the physical track number of the disk drives where the operation is to

be performed.

The operation field contains the desired operation. There are three types

of operations: a single-address read, a multiple-address read. and a write opera-

tion. The difference of a single-address and a multiple-address read is in the pro-

cessing, not the I/0 operation. Recall that the multiple address is transformed

into multiple single-address queue elements. The I/0 operation is always done

one track at a time. For the multiple addiesses. the I/O completion message to

be returned to the requesting process is deferred until the entire sequence is done.

The significance of the block-pointer is interpreted as follow:

1) For a write operation. the block pointer points to the data
which is to be written onto a disk. When the write operation
is completed, a write-done message will be returned to the
requesting process.

2) For a read request with a single address. the block pointer
is a null ponter. When the read operation is completed.
a read-done message will be returned along with the data.

3) For a read request with multiple addresses, the block pointer
is a pointer to an integer whose value represents the total
number of addresses in the sequence. As each operation in the
sequence is being processed, the value pointing to by the

55

block pointer is decremented. When the value reaches zero.
the read request is completed. At which time. a read-done
message will be returned along with the data for the entire
sequence.

To complete our discussion on the queue element. The first field identifies the the

sender of the request. so that the I/O completion message can be returned. The

second field is the request-id which identifies the transaction.

C. THE IMPLEMENTATION

This section discusses the implementation of the disk I/O process. It is given

in two parts. Part 1 presents the program structure and part 2 discusses the

changes in the record processing process.

1. The Program Structure

The disk I/O program is organized in five basic modules. Each module

is responsible for a particular function. They are the message handling module,

the parsing module, the processing module, the entry selection module and the

I/O module. The message handling module is responsible for receiving and send-

ing messages. The parsing module transforms the message element into one or

more I/O elements. Each element represents a pointer to the dio-info structure

which contains the information needed to pass from one module to another. When

a message is received, storages for the dio-info structure and data buffers are

dynamically allocated. As the information is extracted from the message, the

information is stored in the dio-info structure. The content of the dio-info struc-

ture is given as follows:

the sender-id

the space for the request-id structure

the space for disk address structure

56

.!- -

the operation code

a ponter to a data block.

the number of data blocks for the request.

a link to the next dio-info structure

that contains the next data block.

a link head for the starting data block.

a link to the next dio-info structure

The first six fields are used for the I/O operations as discussed in the previous sec-

tion. The next two links are used to support a single request that requires more

than one block of data. For a multiple-block read request. the parsing module

creates a dio-info structure and a block buffer for each data block requested.

Since the data blocks may not be processed in sequence. they are linked within

the dio-info structure for countabilities. The parsing module also maintain a list

of dio-info structures using the last field. The same field is also used for the pro-

cessing module to form its own processing list. Because the dio-info structures are

bounded to a single operation, they are exclusive. The processing list consist of

separate lists, one for each disk and sorted in ascending track address order.

When the entry selection module is called, it selects one entry from each list

according to the disk access algorithm and pass the list of entry to the I/O

module for disk I/O operation. For a write operation. a returned message is sent

to the requesting process via the message handling module. For multiple-block

read request, the internal buffer chain is examined. A returned message is sent

when all the blocks are read.

57

2. Modifications In Record Processing

The changes in the recording processing process are made in three areas:

the removal of the disk initialization routines, the modifications for the message

handle routine, and the changes for the I/O routines.

1) For the disk initialization,
al remove the sys-disk-init call io disk-init from disk-c
b remove the sys-disk-init routine in Unix disk.c

2) For receiving messages from the disk I/O process,

a) insert in the main program in repro.c the following code:

case DIO:
RP-DIO 0;
break;

b) insert RP-DIO routine below RP-RP in recpro.c

RP-DIO (){
get message type
switch (message type){

case: PIO-WRITE:
RP-Write Completed);
break:

case: PIO-READ:
RP-Read Completed);}

)

c) modify RP-Read-Completed routine () in recpro.c
to restore data from message buffer.

d) delete case PIO-WRITE and case PIO-READ
codes from RP-PR monitor io recpro.c

3) For sending message request to the disk I/O process,

a) replace do-io call in TB=STORE and TB-FETCH
routine in disk.c with the following code:

Reg-RP-S ()where

Reg-RP-S (

{

58

fill message buffer with request-id
fill message buffer with disk address
in case of a write operation. fill
message buffer with data
set end of message
header.receiver = DIO:
set appropriate message type
send (msg-q, &header);}

C

4) Add following code to RP CNTL ANOTHER BE MSG in recpproc.c
to send stop message to DTO. - - -

case (Stop):
StopSys = TRUE;
header.sender = RECP;
header.receiver = DIO;
send (msg q, &header);
break;

59

V. CONCLUSION

A. A REVIEW OF THE MBDS SYSTEM

The multi-backend database system (MBDS) consists of two or more proces-

sors and their dedicated disk systems. One of the processor serves as a controller

to provide the host. user. and language interfaces while the rest of the processors

serve as backends to provide the primary database operations with their disks

serving as the database stores. All the backends are identical and run identical

software. The database is evenly distributed across the disk drives of the indivi-

dual backends using of a cluster-based placement algorithm. User sessions with

the MBDS can be established either via a host computer. which in turn communi-

.4cates with the controller, or with the MBDS controller directly. Communications

of the controller and the backends, are broadcasting-based with internal protocols

and database structures.

MBDS. as a message-oriented system. is composed of independent processes.

These processes are designed to support the communications and database func-

tions. For the controller. there are six processes: two communication processes to

provide a communication abstraction for the Ethernet, a user interface process to

control the MBDS sessions, and three other processes to handle the user transac-

tions. For each of the backends. there are six processes: two communication

processes similar to the controller communication processes, three other processes

for concurrency control. directory management and record processing and. finally.

a newly added disk I/O process to handle the disk operations.

60

B. THE SUMMARY OF THE WORK

The purpose of this thesis has been to examine the portability of MBDS. To

this end we recommend a way to minimize the operating-system dependencies for

a highly portable MBDS. In so doing, we have examined three areas in MBDS

where portability is most likely to be compromised. These areas are: 1) the user

interface, 2) the message-passing interface, and 3) the disk I/O interface.

First. with regard to the user interface, we have designed and developed the

multiple record templates to allow the database to serve a variety of applications.

For this development, it has been necessary to modify the internal template struc-

ture of the MBDS to support the new design. Extensive modifications have also

been made to the user interface process in the controller. Included in the

modifications are the complete restructuring of the database load modules, and

the user modules for generating the template file. the descriptor file and the

record. files

Second. we have downloaded the Ohio State version of the MBDS software

that runs on the VAX and SUN configuration, to run on the eight ISI-

workstations. In particular. we have examined the message-passing mechanisms

from a high-level abstraction to the low-level support of the communication pro-

tocols. We have discussed the handling of the communications of two processes in

the controller. of two processes in a backend, and of a process in the controller

and a process in a backend. In addition, we have added broadcasting to allow the

controller to send a message to all the backends and for a backend to send a mes-

sage to all the other backends.

Finally, we have designed and developed the disk I/O process as a new pro-

cess to the backend. We have considered three design alternatives and selected the

backend process approach on the basis of its portability and its conformity with

11

our MBDS design. The disk I/O process is designed to provide efficient disk I/O

operations. It includes such features as the common message interface, the real-

time disk access, the asynchronous I/O and the effective disk access strategy.

C. PORTABILITY ISSUES AND SOLUTIONS

In chapter I. we have discussed the software portability issues and introduced

the notion of the abstraction and isolation as a means of dealing with hardware

and operating-system dependencies. For MBDS. we have identified two areas that

are operating-system dependent. They are the message-passing interface and the

disk-I/O interface. The message-passing interface as described in chapter III pro-

vides the required communications. It is operating-system dependent because the

communication protocols. that support the message-passing interface, are

operating-system dependent. The disk-I/O interface discussed in chapter IV pro-

vides the I/O operations. It is also operating-system dependent because the device

driver that supports the disk I/O interface is a part of the operating system. To

minimize the changes which we have to make in porting from one system to

another. we provided each a high-level abstraction. For the message-passing

interface, we have developed two routines:

send(message);

receive (message);

These routines, in turn, make appropriate system calls to deliver the message. For

the disk-I/O interface, we have provided the do-disk-io routine with appropriate

arguments to handle the disk-I/O operations. If the operating environment

should change. we need only to rewrite these three routines.

For the design of future database systems, the real issue in portability is to be

aware of hardware and operating-system dependencies, rather than to avoid them.

62

Once the portions of the database sysTeti that are hardware and operating-systern

dependent are identified. those portions should be made changeable. Portability of

a database system can best be handled by making the system easy to change.

rather than easy to port without any change. The former will result in a more

efficient system. the latter will not.

1LL

63

-q

APPENDIX A

THE USER INTERFACE

In this appendix we present a thorough walk through the user interface. It
includes the database load operations as discussed in chapter II. and the execu-
tion of requests using existing files. The examples are also included for demonstra-
tions of building requests and input files such as template, descriptorand record
files on-line.

How many backends are there? (1.2,...)>7

Do you want de-bugging messages printed? (y/n)>y
What operation would you like to perform?

g) - generate database
load database

e) -execute test interface
x) -exit to operating system
z) -exit and Stop MDBS

What operation would you like to perform?

(t)- load the template and descriptor files
r)- mass load a file of records
x) - exit, return to previous menu

t

ENTER NAME OF FILE CONTAINING TEMPLATE INFORMATION:

tt.f

ENTER NAME OF FILE CONTAINING DESCRIPTORS:

td.f
What operation would you like to perform?

r - mass load a file of records

x) - exit, return to previous menu
r

64

ENTER NAME OF FILE 'NTAINING RECORDS TO BE LOADED.

t r20.f

TEST 001 I.NS ERT(<TEM\P.Part>.,-PNO.Pl>.<KNAME.Idzn>.KCITYN'Mont>)]
TEST 002 I-NSER TEMP.Part> .< PNO.P2> .<NAME.Xyz> ,<CITY.Sali>)I
TEST 003 INSERT(<TEMP.Part >.<PNOP3 >.<NAME,Nut >,<CITY,Golu>
TEST 004 INSERT(<TEMP,Sups> ,< SNO.S 1 x < NAME,Nut >
TEST 005 INSERT (<TEMPSups>< <SNO.S2 >,< NAME,Nut >
TEST 006 INSERT(<TEMPSups> .<SN\O.S2> .NAMIE,Nut>
TEST 007 INSERT (<TEMP.Sups> ,< SNO.S1 >.< NAME,Dec >
TEST 008 INSERT(<TEMP.Sups>, ,<SNO.S3 >.<NAMXLE.Nut >
TEST 009 INSERT (<TEMP,Sups>, .SNO,S3 >,<NAME.Dec >
TEST 010 INSERT <TEMPSups> ,<SNO, 4 >,<NAMIE.Nut>
TEST 011 IN SERT <TEMPSups> .<SNO.S4>.K<NAMIE.Dec>)
TEST 012 INSERT <TEMNP.Ship>.<SNO,S1>,<PNO.P2>.<QTy.500>)
TEST 013 INSERT <TEM\PShip>.<SNOS2>,<PNO.P2>,<QTY.500>)
TEST 014 INSERT <TEMNP.Ship>.<SNO.S3>,<PNO.Pl>,<QTY.500>)
TEST 015 INSERT <TEM\P.Ship> .<SNO.S4>,<PNO.P2>.K QTY.1000>ITEST 016 INSERT(<TE.MP.Ship>. .<SNO.S1I>,<PNOP2>,< QTY.1000>
TEST 017lINSERT <TEM\P.Ship>.<SNO.5S2>,<PNO.P2>,<QTY.1000>
TEST 018 INSERT <-TEMNP.Ship>x<SNO.S3>,<PNO.P1 >,<QTY.2000>
TEST 019 INSERT <TEM'\P.Ship> .<SNO.S4>,<PNO.P2>,< QTY.2000>
TEST 020[INSERT <TEM\P.Ship>.<SNO.S1>,<PNOP2>,<QTY2OO>

What operation would you lik e to perform?

(t) - load the template and descriptor files
(r) - mass load a file of records
(x) - exit. return to previous menu

x
What operation would you like to perform?

g)- enrate database
1) laddatabase

e) -execute test interface
x) -exit to operating system

,z) -exit and Stop MDBS
e
Do you ALIWAYS want to wait for responses? (y/n)

> y

65

Enter the type of subsession you want
r) REDIRECT OUTPUT: select output for answers

(d) NEW DATABASE: choose a new database
NEW LIST: create a new list of traffic units

(n) MODIFY: modify an existing list of traffic units
(s) SELECT: select traffic units from an existing list

(or give new traffic units) for execution
(o) OLD LIST: execute all the traffic units in an

existing list
(PERFORMA.NCE TESTING

EXIT: return to generateload,execute, or exit menu

SELECTION> s

Enter the name for the traffic unit file
It may be up to 13 characters long including the .ext.
Filenames may include only one ' ' character
as the first character before the version number.

File name> tRCreq.f
List of executable traffic units

(0) [RETRIEVE(TEMP=Sups) (SNO.NAME)
COMMON(SNOSNO)
RETRIEVE(TEMP=Ship) (PNOSNO.QTY)]

(1) [RETR IEVE(TEMP=Sups) (SNO.NAME)]

(2) [RETRIEVE(TEMP=Ship)(PNO.SNO.QTY)

(3) [RETRIEVE(TEMP=Part) (PNO,NAME)
COMMON(PNO.PNO)
RETRIEVE (TEMP =Ship) (SNO.QTY)]

(4) [RETRIEVE(TEMP=Part) (PNO.NAME)]

(5) [RETRIEVE(TEMP=Ship) (SNO.QTY.PNO)
COMMON(QTYQTY)
RETRIEVE(TEMP =Ship) (SNO.PNO)j

(6) [RETRIEVE (TEMP =Ship) (SNO,QTY,PNO)]

66

"This section shows how To inoea pred(':ied retrie-cmorqut

Select Options

(n) enter a new traffic unit to be executed
(num) execute the traffic unit at [num]
(x) exit from this SELECT subsession

Option> 0

TEST 023 [RETRIEVE (TEMP =Sups) (SNO.NAME)
CONBION(SNO.S-NO)
RETRIEVE (TEMP =Ship) (PNO.SNO0.QTY)]

-COMMINON.File> <SNO.S1> <NAME.Dec> <P-NO.P2> <S-NO.S1> <QTY.2000>
<GOMX.ON.File> <SNO.Sl> <NAME.Dec> < P'NO .P 2> <SNO.SL> <QTY.1000>
<COM\MO.NFile> <S-NO.S1> < NAME.Nut > <PNO.P2> < SXO. S 1> <QTY.500>
<COMMON.File> <SNO.S1> <NAME.Nut> <PNO.P2> <SNO.S1> <QTY.2000>
<COMEMON.File> <SNO.S1> <'NANM1E. D ec> <P-NO.P2> <SNO.S1'> <QTY.500 >
<CO.MMNON.File> <SNO.S3> <.NAME.Nut> <PNO.P1> <SNOS3> ' QTY.2000>
<COMMON.File> < SNO.S 1> <NAME.Nut> <PNO.P2> <SNO.Sl> <QTY.1000,,
< C OMMON. File> <SNO.S2> <NAMNE.Nut> scPNO.P2> <SXO.S2> <QTY.500>
<COMMNX.ON.File> <SNO.S3> <NAME.Nut> <PNO.P1> <SNO.S3> <QTY.500>
< COMMNON.File> <SNO.S3> <NAME.Dec> <PNO.Pl> <SNO,S3> <QTY,2000>
<COMMON,Fi~e> <SNO.S2> <NAME.Nut> <PNO.P2> <SNOS2> <QTY.1000>
<COMMNON.File> <SNO.S2-> <NAME.Nut> <PNO.P2> <SNOS2> <QTY.500>
<COMM.NON.File> <SNO.S3-> KNAME.Dec> <PNO.P1> <SNOS3> <QTY.500>
<COMMl'\ON.File> <SNO.S4'> <NAME.Nut> <PNO.P2> <S-NO.S4> <QTY.2000>
<COMMf.%ON.File> <SNO.S2>-- <NAME.Nut> <PNO.P2> <SNO.S2> <QTY.1000>
-<COMMf.\ON.File> <S-NO.S4> <.NAME.Nut> <PNOP2> <SNOS4> <QTY.1000>
<COMXMON.File> <S.NO.S4> <NAME.Dec> <PNO.P2> <SNO,S4> <QTY.2000>
<COMMON.File> < SN0. S 4>-- <NAMNE.Dec> <PNO.P2> <SNOS4> <QTY.1000>

67

/" This section describes the method to build a retrieve-common request'/

Select Options

d display the traffic units in the list
n) enter a new traffic unit to be executed
num) execute the traffic unit at [num]
. exit from this SELECT subsession

Option> n

Enter the character for the desired Traffic Unit type.

r) Request
t Transaction (multiple requests)
f Finished entering traffic units.

Letter> r

Enter the character for the desired next step.

i)I INSERT
r) RETRIEVE
ul UPDATE

DELETE
c) RETRIEVE COMMON

LETTER> c

RETRIEVE COMMON Request
First enter the source retrieve request

RETRIEVE Request

Enter responses as you are prompted. You will be prompted first for
the predicates of the query. then attributes for the target-list.
next for an attribute for the optional BY clause and finally for
a pointerfor the optional WITH clause.

When you have finished entering predicates for the query. respond
to the ATTRIBUTE> prompt with a <return>.

ATTRIBUTE> TEMP

68

.. . . ,, .. ~-S. * ,.,*.

Enter the character for the desired reiational operator

(a) =EQUAL

b) 7= NOT EQUAL
c) > GREATER THAN
d) >= GREATER THAN or EQUAL
e) < LESS THAIN

<= LESS THAN or EQUAL

Letter> a

Value> Sups

So far your conjunction is
(TEMP=Sups).
Do you wish to 'and' additional predicates to this conjunction? (y/n)
n
Do you wish to append more conjunctions to the query? (y/n)
n

Begin entering attributes for the Target-List. When you are through
entering attributes respond to the ATTRIBUTE> prompt with <return>.
Do you wish to be prompted for aggregation?
n

ATTRIBUTE> SNO

ATTRIBUTE NAME

ATTRIBUTE,

COMMON ATTRIBUTE 1> SNO

COMMON ATTRIBUTE 2> SNO

The request being built is:
[RETRIEVE(TEMP =Sups)(SNO,NAME)COMMON(SNO,SNO) 4

69

Enter the target retrieve

RETRIEVE Request

Enter responses as you are prompted. You will be prompted first for
the predicates of the query, then attributes for the target-list.
next for an attribute for the optional BY clause and finally for
a pointerfor the optional WITH clause.

When you have finished entering predicates for the query, respond
to the ATTRIBUTE> prompt with a <return>.

ATTRIBUTE> TEMP
Enter the character for the desired relational operator

(al-QUA

b/= NOT EQUAL
c) > GREATER THAN
d) >= GREATER THAN or EQUAL
e) < LESS THAN
0 <= LESS THAN or EQUAL

Letter> a

Value> Ship

So far your conjunction is
(TEMP--Ship).
Do you wish to 'and' additional predicates to this conjunction? (y/n)
n
Do you wish to append more conjunctions to the query? (y/n)
n

Begin entering attributes for the Target-List. When you are through
entering attributes respond to the ATTRIBUTE> prompt with <return>.
Do you wish to be prompted for aggregation?
n

ATTRIBUTE> SNO

ATTRIBUTE> PNO

ATTRIBUTE> QTY

ATTRIBUTE,,

70

The request being processed is:
!RETRIEVE (TEMP =Sups) (SN\O .NAM\E)

COMM\ON (SNO.SNO)
RETRIEVE (TEMP =Ship) (SNO.PN O.QTY)]

K COMMON.File> <SNO.Sl> <NAME,Dec> <PNO.P2> <SNO.S1> <QTY,2000>
<GOMMON.File> <SNO.Si> <NAME,Dec> <PNO,P2> <SNO.S1> <QTY.OOO>
<COMMON.File> <SNO.Sl> <NAME.Nut> <PNO.P2> <SNOSi> <QTY.500>
<,COMMON_ File> <SNO.S1> <NAME,Nut> <PNO.P2> <SNO.S1> <QTY.2000>
<COMM.vON.File> <SNO.S1> <.NAME.Dec> <PNO.P2> <SNOS1> <QTY.500>
<COMMON.File> <SNO.S3> <NAME,Nut-> <PNO.P1> <SNO,S3> <QTY.2000>
'zCOMMON.File> <SNO.S1> <NAME.Nut-> <PNO,P2> <SNO.S1> <QTY.1000>
<:COMMON.File> <SNO.S2> <N\AME,Nut> <PNO.P2> <SNO.S2> <QTY.500>
K COMMON.File> <SNO.S3j-~ <.NAME.Nut> K PNO.P1> <SNO.S3> <QTY.500>
,COMMON.File> <SNO.S3> KNAMXE,Dec> <PNO.Pl> <SNO.S30> <QTY.2000>

<.COMMON.'.File> <cSNO.S2> <NAME.Nut> <PNO.P2> <SNO.S2> <QTY.OOO>
'iOMO.il><SNO.S2> <NAME.Nut> <PNO,P2> <SNO.S2> <QTY.500>

cCOMMON.File> <SNO.S3> <NAME,Dec> <PNO.P1> <SNO.S3> <QTY.SQO>
< COMMO\1N.File> K SNO.S4 > <NAME,Nut> <PNO.P2> <SNOS4> <QTY.2000>
COMMI\ON.File:,. <,-SNO.S2>- <NAME.Nut> <PNO.P2> <SNO.S2> <QTY.1000>
~CO.' NFie .-NOS4> NAME.Nut-> <PNO.P2> <SNO.S4> <QTY.1000>

<COMMO.N.File: -S.NO.S4> <-NAME.Dec> <PNO,P2> <SNO.S4> <QTY.2000>
<CMMONie --N.S <NAMIE,Dec> <PNOP2-> <SNO.S4> <QTY,1000>

Select Options

(d) display the traffic units in the list
~n) enter a new traffic unit to be executed
nm) execute the traffic unit at [numj

(x) exit from this SELECT subsession

Option,> x

Enter the type of subsession you want
(r) REDIRECT OUTPUT: select output for answers
(d) NEW DATABASE, choose a new database
(n) NEW LIST: create a new list of traffic units
(i) MODIFY: modify an existing list of traffic units
(s) SELECT: select traffic units from an existing list

(or give new traffic units) for execution
(o) OLD LIST: execute all the traffic units in an

existing list
(p~ PERFORMANCE TESTING

(EXIT: return to generate, lo ad.exec u te, or exit menu

SELECTION> x

71

What operation would you like to perform?

g) z generate database
1)(1 load database
e) -execute test interface
x) exit to operating system
z) -exit and Stop MDBS

g

Do you want de-bugging messages printed? (y/n)
y
What operation would you like to perform?

t) - generate record template
d) -generate descriptors
m) - generate/modif v sets
r) generate records
q)- quit. return to previous menu

to load, execute or exit system
t

ENTER THE NAME OF THE FILE TO BE USED TO STORE
TEMPLATE INFORMATION:
wt.f

File 'wt.r opened successfully

ENTER DATABASE ID:
TEST

ENTER THE NUMBER OF TEMPLATES FOR DATABASE TEST:
3

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #1:
4

ENTER THE NAME OF TEMPLATE #1:
Part

ENTER ATTRIBUTE NAME #1 FOR TEMPLATE Part:
TEMP

ENTER VALUE TYPE: (s=string. i=integer)
S

ENTER ATTRIBUTE NAME #2 FOR TEMPLATE Part:
PNO

ENTER VALUE TYPE: (s=string, i=integer)

72

ENTER ATTRIBUTE NAME -3 FOR TEMPLATE Part:
NAME

ENTER VALUE TYPE: (s=string. i=integer)
S

ENTER ATTRIBUTE NAME #4 FOR TEMPLATE Part:
CITY

ENTER VALUE TYPE: (s=string. i-integer)
S

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #2:
3

ENTER THE NAME OF TEMPLATE #2:
Sups

ENTER ATTRIBUTE NAME #1 FOR TEMPLATE Sups:
TEMP

ENTER VALUE TYPE: (s=string. i=integer)
s

ENTER ATTRIBUTE NAME #2 FOR TEMPLATE Sups:
SNO

ENTER VALUE TYPE: (s=string. i=integer)
S

ENTER ATTRIBUTE NAME #3 FOR TEMPLATE Sups:
NAME

ENTER VALUE TYPE: (s=string. i=integer)
S

ENTER THE NUMBER OF ATTRIBUTES FOR TEMPLATE #3:
4

ENTER THE NAME OF TEMPLATE #3:
Ship[

ENTER ATTRIBUTE NAME #1 FOR TEMPLATE Ship:
TEMIP

ENTER VALUE TYPE: (s=string. i=integer)
S

ENTER ATTRIBUTE NAME #2 FOR TEMPLATE Ship:

73

-- SNO

ENTER VALUE TYPE: (s=string. i=integer)
S

ENTER ATTRIBUTE NAME #3 FOR TEMPLATE Ship:
PNO

ENTER VALUE TYPE: (s=string, i-integer)
S

ENTER ATTRIBUTE NAME #4 FOR TEMPLATE Ship:
QTY

ENTER VALUE TYPE: (s=string, i=intege')
i

file "wt.f successfully closed
What operation would you like to perform?

-t) - generate record template
d) generate descriptors
m) generate/modify sets
r)- generate records
(q) quit, return to previous menu

to load, execute or exit system
d

ENTER THE NAME OF TEMPLATE FILE:
wt.f

file "wt.f" opened successfully

ENTER THE NAME OF THE FILE TO BE USED FOR
STORING DESCRIPTORS:
wd.f

file 'wd.fr opened successfully

Do you want attribute 'TEMP' to be a directory attribute? (y/n)
y

ENTER THE DESCRIPTOR TYPE FOR TEMP:(A,B.C)
C

ENTER UPPER BOUND FOR EACH DESCRIPTOR IN TURN
-- ENTER '(-' TO STOP

UPPER BOUND>
Sups

UPPER BOUND>

74

Ship

UPPER BOUND>

Do you want attribute 'PNO" to be a director% attribute? (y/n)
y

ENTER THE DESCRIPTOR TYPE FOR PNO:(A,B.C)
A

Use '!' to indicate that no lower bound exists ... Enter 'cQ' to stop

ENTER LOWER BOUND FOR DESCRIPTOR:

ENTER UPPER BOUND FOR DESCRIPTOR: ... (lower bound =!)
P1

ENTER LOWER BOUND FOR DESCRIPTOR:

ENTER UPPER BOUND FOR DESCRIPTOR: ... (lower bound =!)
tP 2

ENTER LOWER BOUND FOR DESCRIPTOR:

Do you want attribute 'NAME* to be a directory attribute? (y/n)
Y

ENTER THE DESCRIPTOR TYPE FOR NAME:(A,B,C)
A

Use ' to indicate that no lower bound exists ... Enter '©' to stop

ENTER LOWER BOUND FOR DESCRIPTOR:
A

ENTER UPPER BOUND FOR DESCRIPTOR: ... (lower bound = A)
L

ENTER LOWER BOUND FOR DESCRIPTOR:
M

ENTER UPPER BOUND FOR DESCRIPTOR: ... (lower bound = M)
N

ENTER LOWER BOUND FOR DESCRIPTOR:

75

0

ENTER UPPER BOUND FOR DESCRIPTOR: ... (lower bound = 0)
z

ENTER LOWER BOUND FOR DESCRIPTOR:

Do you want attribute 'CITY' to be a directory attribute? (y/n)
n

Do you want attribute 'SNO' to be a directory attribute? (y/n)
n

Do you want attribute 'QTY' to be a directory attribute? (y/n)
Y

ENTER THE DESCRIPTOR TYPE FOR QTY:(AB,C)
A

Use '!* to indicate that no lower bound exists ... Enter 'Ca to stop

ENTER LOWER BOUND FOR DESCRIPTOR:
1

ENTER UPPER BOUND FOR DESCRIPTOR: ... (lower bound = 1)
1000

ENTER LOWER BOUND FOR DESCRIPTOR:
1000

ENTER UPPER BOUND FOR DESCRIPTOR: ... (lower bound = 1000)
9000

ENTER LOWER BOUND FOR DESCRIPTOR:

file 'wt.f successfully closed
file 'wd.f successfully closed

What operation would you like to perform?

t) - generate record template
d) - generate descriptors
m) - generate/modify sets
r) - generate records

(q) - quit, return to previous menu
to load, execute or exit system

r

ENTER THE NAME OF TEMPLATE FILE:

76

wrf

"ERROR" cannot open template file wr."

RE-ENTER TEMPLATE FILE NAME:
wt.f

file 'wt.f opened successfully

ENTER THE NAME OF THE FILE TO BE USED FOR
STORING RECORDS:
wr.f

file 'wr.f" opened successfully

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
PNO.s

file "PNO.s" opened successfully
file 'PNO.s' successfully closed

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
NAME.s

file 'NAME.s" opened successfully
file 'NAME.s' successfully closed

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
CITY.s

file 'CITY.s' opened successfully

file 'CITY.s' successfully closed

48 records can be generated for template 'Part'...

How many records do you want generated?
6

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
SNO.s

file 'SNO.s" opened successfully
file 'SNO.s' successfully closed

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
NAME.s

77

file 'NAME.s" opened successfully

file "NAME.s" successfully closed

28 records can be generated for template 'Sups*...

How many records do you want generated?
4

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
SNO.ds

file 'SNO.s' opened successfully
file 'SNO.s' successfully closed

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
PNO.s

file "PNO.s" opened successfully
file 'PNO.s' successfully closed

ENTER THE NAME OF THE FILE CONTAINING THE VALUES
FOR ATTRIBUTE
QTY.s

file 'QTY.s" opened successfully
file "QTY.s' successfully closed

28 records can be generated for template 'Ship'...

How many records do you want generated?
2

ALL RECORDS GENERATED

file "wt.f" successfully closed
file "wr.f" successfully closed
What operation would you like to perform?

() - generate record template
generate descriptors

m) generate/modify sets
r)- generate records
q) -quit, return to previous menu

to load, execute or exit system

78

m

ENTER THE NAME OF TEMPLATE FILE:
wt.f

file 'wt.f opened successfully

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'TEMP' ON TEMPLATE 'Part':r n - generate a new set for it

m modify an existing set for it
do nothing with it

n

ENTER THE NAME OF THE FILE TO BE USED TO STORE THE SET:
W.s

file 'w.s opened successfully

ENTER SET VALUE:
Ji

ENTER SET VALUE:
J2

ENTER SET VALUE:

file 'w.s' successfully closed
Set generation completed ... do you want to modify it ?

ENTER THE FILE NAME OF THE SET TO BE MODIFIED
w .s

file 'w.s opened successfully

What function do you want to perform next?
p - print the set elements and their indices

- add some elements to the set
- remove some elements from the set
n nothing: done

p
INDEX ELEMENT
0 Ji
1 J2

What function do you want to perform next?
{p - print the set elements and their indices

- add some elements to the set
- remove some elements from the set

79

(n) - nothing: done
n

Do you want to store the modified set back into the original file ? (y/n)
n

ENTER THE NAME OF THE FILE TO BE USED TO STORE THE SET:

file 'C' successfully closed

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'PNO' ON TEMPLATE 'Part*:

(n) - generate a new set for it
i) modify an existing set for it
s) do nothing with it

s

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'NAME' ON TEMPLATE 'Part':

Sn) -generate a new set for it
mn) modify an existing set for it

(s) do nothing with it
s

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'CITY' ON TEMPLATE 'Part':

) - generate a new set for it
m modify an existing set for it

) do nothing with it
s

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'TEMP' ON TEMPLATE 'Sups':

i n) -generate a new set for it
mn) modify an existing set for it
s) do nothing with it

S

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'SNO ON TEMPLATE 'Sups':

n) - generate a new set for it
(n) modify an existing set for it
s) do nothing with it

s

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'NAME' ON TEMPLATE 'Sups':

ni) -generate anew set for it
(n) modify an existing set for it
s) do nothing with it

80

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'TEMP' ON TEMPLATE 'Ship:

(n) - generate a new set for it
(i) modify an existing set for it
s) do nothing with it

s

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'SNO' ON TEMPLATE 'Ship*:

) - generate a new set for it
) modify an existing set for it
s do nothing with it

S

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'PNO' ON TEMPLATE 'Ship':

n)- generate a new set for it
m modify an existing set for it

- do nothing with it
s

CHOOSE ACTION TO BE TAKEN FOR
ATTRIBUTE 'QTY' ON TEMPLATE 'Ship':

(n) -generate a new set for it
() modify an existing set for it
(s) do nothing with it

S

file 'wt.f successfully closed
What operation would you like to perform?

(t) - generate record template
(d) generate descriptors
{m) generate/modify sets

- generate records
q quit. return to previous menu

to load. execute or exit system
q
What operation would you like to perform?

(g) - generate database
(1) load database
e)- execute test interface

x exit to operating system
z exit and Stop MDBS

z

81

- N

APPENDIX B

The Program Specifications of the Disk I/O Process

This appendix contains a detail specification for the design of the disk I/O pro-
cess. The specification is written in a high-level system specification language
which should be readable. The language has typical constructs:

1 perform procedure (); /* a procedure call */
if expression then statements else statement endif

3 while condition do statements endwhile
4 the condition do statements endif
5 case type 'constant' statements endcase

The language uses a dot notion to number each statement. The number
between the dots. for example. 10.1 indicating statement 10 in the main program,
is a performance or procedure call. The procedure is defined beginning with
number 10.1. There can be many levels or dots.

Data Structures:

Structure gue-infor {
sender: integer /*name of sender ~
request-id: string /* request code */
address: array /* disk, cylinder and track number */
op code: integer /* read or write operation */
link: pointer /* link to next que-info '/
n block: integer /* number of block in a single request/
chain: pointer /* que-info chain for multiple

block request */
chain-head: pointer /* head of que-info chain/
block-ptr: /* pointer to the data block

que-info head: pointer /* head of link list *1
process-que-head: array /* array of pointer for processing

que. one for each disk */
io-entry: array selected entries one from each

processing queue
drive-head: array /* position of disk arm. one for each

disk /

82

Program Specifications:

1 task disk i/o
2 perform DIO-inito;
3 Stop False;
4 time :=o;
5 while Stop is not time do
6 perform get-message 0;
7 if message is received
8 then
9 if message is not a stop message
10 then perform que-message 0;
11 if message buffer is full
12 then
13 perform process();
14 perform get-entry(;
15 perform do-io0;
16 else
17 time := time +1;
18 endif
19 else
20 stop : TRUE;
21 endif
22 else
23 if timeout
24 then
25 perform processo:
26 perform get-entry(:
27 perform do-io 0;
28 else
29 time time+1
30 endif
31 endif
32 endwhile
33 endtask

83

6.1 proc get-rnessage()
6.2 receive message
6.3 if message is received
6.4 then
6.5 return (TRUE):.
6.6 else
6.7 return (FALSE);
6.8 endif
6.9 endproc

NN

10.1 proc que-message
10.2 allocate storage for que-info
10.3 parse message into que-info
10.4 if message is a write request
10.5 then
10.6 allocate storage for data block
10.7 copy block point in que-info
10.8 push que-info pointer in stack
10.9 msg:= msg+l;
10.10 return
10.11 else
10.12 get number of address
10.13 for each address do
10.14 allocate storage for data block
10.15 copy que-info from previous que info pointer
10.16 copy next address from message buffer
10.17 update previous pointer
10.18 push current info pointer in stack
10.19 msg := msg+1;
10.20 update previous que-info pointer
10.21 end for
10.22 endif
10.23 endproc

85

-r ~ ~ .. I

13.1 proc process U
13.2 message := que-info-head:
13.3 if message is NULL
13.4 then
13.5 return 0;
13.6 endif
13.7 while message pointer is not NULL do
13.8 get process-head for the disk in message
13.9 perform sortmerge (message, process-head);
14.0 update message to next link
14.1 end while
14.2 que-info head = NULL
14.3 end proc

86

13.9.1 proc sortmerge (message. process
13.9.2 if no element in process-que head
13.9.3 then
13.9.4 replace process-head with message pointer
13.9.5 return 0;
13.9.6 endif
13.9.7 computer track number from address element for message
13.9.8 while process-que is not empty do
13.9.9 computer track number for process element
13.9.10 if process track number is greater than that of

message
13.9.11 then
13.9.12 if process pointer is the head
13.9.13 then
13.9.14 insert message pointer as process-head
13.9.15 else
13.9.16 insert message pointer
13.9.17 endif
13.9.18 else
13.9.19 get next pointer in process list
13.9.20 endif
13.9.21 endwhile
13.9.22 attach message pointer to end of process list
13.9.23 endproc

87

PIP

: . .. 3" " " ' ' " ' " 3. " ' ,'P

/ This routine select a process element closest to the
current head position in the forward direction /

14.1 proc get-entry ()
14.2 for each disk do
14.3 get process-head queue for that disk
14.4 if process-head queue has no element
14.5 then
14.6 io-entry of that disk := NULL;
14.7 continue to next disk
14.8 endif
14.9 while process list is not empty do
14.10 computer track number
14.11 if track is less the current head position
14.12 then
14.13 get next element in list
14.14 else
14.15 io-entry of that disk = process pointer
14.16 drive-position = track number
14.17 enAif
14.18 endfor
14.19 endproc

88

---- A

15.1 proc do-io
15.2 for each disk do
15.3 if io-entry of that disk is NULL
15.4 then
15.5 skip to the next disk
15.6 endif
15.7 get value of drive-position for that disk
15.8 position drive
15.9 case opcode
15.10 'READ'
15.11 get block-pointer from que-info
15.12 read block data
15.13 get chain-head from que-info
15.14 while chain list is empty do
15.15 if block is read
15.16 then
15.17 get next pointer in chain
15.18 else
15.19 return 0).
15.20 endif
15.21 endwhile
15.22 perform io-send(io-entry):
15.23 free all structures and blocks
15.24 break:
15.25 'WRITE'
15.26 get block-pointer
15.27 write data block
15.28 io-send(io-entry);
15.29 free structure and block
15.30 break;
15.31 endcase
15.32 endfor
15.33 endproc

89

15.22.1 io-send (io-entry)
15.22.2 get opcode from io-entry pointer to que-info structure
15.22.3 case opcode
15.22.4 'READ'
15.22.5 fill message buffer with request-id
15.22.6 fill message buffer with addresses
15.22.7 fill message buffer with data blocks
15.22.8 set message type to PIO-READ
15.22.9 return message to sender
15.22.10 break:
15.22.11 'WRITE'
15.22.12 fill message buffer with request-id
15.22.13 fill message buffer with address
15.22.14 set message type to PIO-WRITE
15.22.15 return message to sender
15.22.16 break;
15.22.17 endcase
15.22.18 endproc

go

LIST OF REFERENCES

1. Hsiao. D. K.. and Menon. M. J.. Design and Analysis of a Multi-Backend
Database System for Performance Improvement. Functionality Expansion
and Capacity Growth (part I), Naval Postgraduate School Technical Report
nps52- 83- 006, 1983.

2. Hsiao. D. K.. and Menon, M. J., Design and Analysis of a Multi-Backend
Database System for Performance Improvement. Functionality Expansion
and Capacity Growth (part II), Naval Postgraduate School Technical Report
nps52-83-O07. 1983.

3. Kerr. D.S.. Orooji. A.. Shi, Z. and Strawser, P. R.. The implementation of a
multi-backend Database System (MBDS): part I - Software Engineering
Strategies and Efforts Towards a Prototype MBDS. Naval Postgraduate
School Technical Report nps52-83-008. 1983.

4. He. X., Higashida. M., Hsiao, D. K.. Kerr, D. S., Orooji, A.. Shi. Z. and
Strawser. P. R.. The Implementation of a Multi-Backend Database System
(MBDS): part II - The First Prototype MBDS and the Software Engineering
Experience. Naval Postgraduate School Technical Report nps52-82-008. 1982.

5. Boyne. R. D..Demurjian, S. A..Hdsiao, D. K., Kerr, D. S. and Orooj. A..
The Implementation of a Multi-Backend Database System (MBDS):
part III - The message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management, Naval Postgraduate
School Technical Report nps52-83-O03, 1983.

6. Demurjian. S. A..Hdsiao. D. K.. Kerr. D. S. and Orooj. A.. The Implemen-
tation of a Multi-Backend Database System (MBDS): part IV - The Revised
Concurrency Control and Directory Management Processes and The Reviced
Definitions of Inter-computer Message. Naval Postgraduate School Technical
Report nps52-84-005. 1984.

7. Hsiao. D. K.. A Generalized Record Organization, IEEE Transactions On
Computer C-20 Number 12, 1971. sp 1

8. Hunt. A. L.. The Implementation of The Primary Operation. Retrieve-
Common of the Multi-Backend Database System (MBDS), Master Thesis,
Naval Postgraduate School. Mfonterey, CA. 1986.

91

INITIAL DISTRIBUTION LIST

No. Copies

1. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5000

2. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

3. Curriculum Officer, Code 37
Computer Technology Programs
Naval Postgraduate School
Monterey. California 93943-5000

4. Professor David K. Hsiao, Code 52Hq 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

5. Steven A. Demurjian, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

6. Ablert Wong, Code 52 6
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

92

I'm-

- ------ --

